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Gazette, London, December, 1953

THE book has reached Its 5th edition in 9 years and it

can be assumed that it meets all demands. Is it the revie-

wer's fancy to discern the influence of G. H. Hardy in the

opening chapter on real numbers, which are well and

clearly dealt with ? Or is this only to be expected from

an author of the race which taught the rest of the world

how to count ?

* .- "i * *

The course followed is comprehensive and thorough,

and there is a good chapter on v curve tracing. The author

has a talent for clear exposition, and is sympathetic to the

difficulties of the beginner.

* * #

Answers to examples, of which there are good and ample

selections, are given.

* # 3

Certaianly Mr. Narayan's command of English is

excellent Our own young scientific or mathematical

specialist, grumbling over French or German or Latin as

additions to their studies, would do well to consider their

Indian confreres, with English to master before their

technical education can begin.
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Preface to the Tenth Edition

The book has been revised. A few more exercises drawn from

the recent university papers have been given.

30th April, 1962. SHANTI NARAYAN

PREFACE

This book is meant for students preparing for the B.A. and

B.Sc. examinations of our universities. Some topics of the Honours

standard have also been included. They are given in the form of

appendices to the relevant chapters. The treatment of the subject

is rigorous but no attempt has been made to state and prove the

theorems in generalised forms and under less restrictive conditions as

is the case with the Modern Theory of Function. It has also been a

constant endeavour of the author to see that the subject is not pre-

sented just as a body of formulae. This is to see that the student

does not form an unfortunate impression that the study of Calculus

consists only in acquiring a skill to manipulate some formulae

through 'constant drilling'.

The book opens with a brief 'outline of the development of

Real numbers, their expression as infinite decimals and their repre-
sentation by points 'along a line. This is followed by a discussion

of the graphs of the elementary functions x"> log x, ex
,
sin x, sin-1

*,

etc, Some of the difficulties attendant upon the notion of inverse

functions have also been illustrated by precise formulation of

Inverse trigonometrical functions. It is suggested that the teacher

in the class need refer to only a few salient points of this part of the

book. The student would, on his part, go through the same in

complete details to acquire a sound grasp of the basis of the subject.
This part is so presented that a student would have no difficulty in

an independent study of the same.

The first part of the book is analytical in character while the

later part deals with the geometrical applications of the subject.

But this order of the subject is by no means suggested to be rigidly

followed in the class. A different order may usefully be adopted at

tho discretion of the teacher.

An analysis of the 'Layman's' concepts has frequently been

made to serve as a basis for the precise formulation of the corres-

ponding 'Scientist's' concepts. This specially relates to the two

concepts of Continuity and Curvature.



Geometrical interpretation of results analytically obtained have
been given to bring them home to the students. A chapter on 'Some

Important Curves' has been given before dealing with geometrical

applications. This will enable the student to get familiar with the

names and shapes of some of the important curves. It is felt that a

student would have better understanding of the properties of a

curve if he knows how the curve looks like. This chapter will also

serve as a useful introduction to the subject of Double points of a

curve.

Asymptote of a curve has been defined as a line such that the

distance of any point on the curve from this line tends to zero as

the point tends to infinity along the curve. It is believed that, of all

the definitions of an asymptote, this is the one which is most natural.

It embodies the idea to which the concept of asymptotes owes its

importance. Moreover, the definition gives rise to a simple method
for determining the asymptotes.

The various principles and methods have been profusely illus-

trated by means of a large number of solved examples.

I am indebted to Prof. Sita Ram Gupta, M.A., P.E.S., formerly
of the Government College, Lahore who very kindly went through the

manuscript and made a number of suggestions. My thanks are also

due to my old pupils and friends Professors Jagan Nath M.A.,
Vidya Sagar M A., and Om Parkash M A., for the help which they
rendered me in preparing this book.

Suggestions for improvement will be thankfully acknowledged.

January, 1942 SHANTI NARAYAN
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CHAPTER I

REAL NUMBERS

FUNCTIONS

Introduction. The subject of Differential Calculus takes its

stand upon the aggregate of numbers and it is with numbers and
with the various operations with them that it primarily concerns
itself. It specially introduces and deals with what is called Limiting
operation in addition to being concerned with the Algebraic opera-
tions of Addition and Multiplication and their inverses, Subtraction
and Division, and is a development of the important notion of Instan-

taneous rate of change which is itself a limited idea and, as such, it

finds application to all those branches of human knowledge which
deal with the same. Thus it is applied to Geometry, Mechanics and
other branches of Theoretical Physics and also to Social Sciences such
as Economics and Psychology.

It may be noted here that this application is essentially based
on the notion of measurement, whereby we employe-numbers to
measure the particular quantity or magnitude which is the object of

investigation in any department of knowledge. In Mechanics, for

instance, we are concerned with the notion of time and, therefore, in

the application of Calculus to Mechanics, the first step is td~ correlate

the two notions of Time and Number, i.e., to measure time in terms
of numbers. Similar is the case with other notions such as Heat,
Intensity of Light, Force, Demand, Intelligence, etc. The formula^
tion of an entity in terms of numbers, i.e., measurement, must, of

course, take note of the properties which we intuitively associate with
the same. This remark will later on be illustrated with reference to

the concepts of Velocity, Acceleration Gwry^fr&e, etc.

The importance of numlTe^l^/Bfe-sradj^bf i^subject in hand

being thus clear, we will in some* .of the; :f#ltowig. articles, see how we
were first introduced to the notion of number and how, in course of

time, this notion came to* be subjected to a series of generalisations.

It is, however, not intended to give here any logically connect-

ed amount of the development of tl>e system of real numbers, also

known as Arithmetic Continuum and only a very brief reference to

some well known salient facts will suffice for our purpose. An
excellent account of the. -Development of numbers is given in

'Fundamentals of Analysis' by Landau.

It may also be mentioned here.that even though it satisfies a

deep philosophical need to base the theory part of Calculus on the

notion *>f number ialohe, to the entire exclusion of every physical
basis, but a rigid insistence on the same is not within the scope of
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this book and intuitive geometrical notion of Point, Distance, etc.,

will sometimes be appealed to for securing simplicity.

1-1. Rational numbers and their representation by points along a

straight line.

I'll. Positive Integers. It was to the numbers, 1, 2, 3, 4, etc. r

that we were first introduced through the process of counting certain

objects. The totality of these numbers is known as the aggregate of

natural numbers, whole numbers or positive integers.

While the operations of addition and multiplications are^,un-

restrictedly possible in relation to the aggregate of positive integers,
this is not the case in respect of the inverse operations of subtraction

and 'division. Thus, for example, the symbols

are meaningless in respect of the aggregate of positive integers.

1*12. Fractional numbers. At a later stage, another class of

numbers like p\q (e.g., |, |) where p and q are natural numbers, was
added to the former class. This is known as the class of fractions

and it obviously includes natural numbers as a sub- class ; q being

equal to 1 in this case.

The introduction of Fractional numbers is motivated, from an
abstract point of view, to render Division unrestrictedly possible and,
from concrete point of view, to render numbers serviceable for

measurement also in addition to counting.

1-13. Rational numbers. Still later, the class of numbers was

enlarged by incorporating in it the class of negative fractions includ-

ing negative integers and zero. The entire aggregate of these numbers
is known as the aggregate of rational numbers. Every rational

number is expressible as p\q, where p and q are any two integers,

positive and negative and q is not zero.

The introduction of Negative numbers is motivated, from an
abstract point of view/ to render Subtraction always possible and,
from concrete point of view^, to facilitate a unified treatment oi

oppositely directed pairs of entities such as, gain and loss, rise and

fall, etc.

1-14. Fundamental operations on rational numbers. An impor-
tant property of the aggregate of rational numbers is that the

operations of addition, multiplication, subtraction and division can
be performed upon any two such numbers, (with one exception which
is considered below in T15) and the number obtained as the result

of these operations is again a rational number.

This property is
expressed by saying tli^t the ag^egate of

rational numbers is closed with respect to the four fundamental

operations.

1-15. Meaningless operation of division by zero. It is important
to note that the only exception to the above property is 'Division
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by zero' which is a meaningless operation. This may be seen as

follows :

To divide a by b amounts to determining a number c such that

bc=a,
and the division will be intelligible only, if and only if, the determi-

nation of c is uniquely possible.

Now, there is no number which when multiplied by zero pro-
duces a number other than zero so that aJO is no number when 0^0.
Also any number when multiplied by zero produces zero so that 0/0
may be any number.

On account of this impossibility in one case and indefiniteness in

the other, the operation of division by zero must be always avoided.

A disregard of this exception often leads to absurd results as is

illustrated below in (/).

(i) Let jc- 6.

Then

;c
2-36:=.x-6,

or (x--6)(jc-f.6)=Jt 8.

Dividing both sides by jc 6, we get

jc+6=l.

6+6=1, i.e., 12= 1.

which is clearly absurd.

Division by jc 6, which is zero here, is responsible for this

absurd conclusion.

(ii) We may also remark in this connection that

X

^lf=
(

*~^~
6)
=x+6, only when *j66. ... (1)

For *=6, the left hand expression, (je
2

36)/(x 6), is meaning-
less whereas the right hand expression, x-f 6, is equal to 12 so that

the equality ceases to hold for Jt=6.

The equality (1) above is proved by dividing the numerator
and denominator of the fraction (x

2
36)/(x 6) by (.x 6) and this

operation of division is possible only when the divisor (jc -6) ^0, i.e* 9

when x^6. This explains the restricted character of the equality (1).

Ex. 1. Show that the aggregate of natural numbers is not closed with

respect to the operations of subtraction and division. Also show that the

aggregate of positive fractions is not closed with respect to the operations of
subtraction.

Ex. 2. Show that every rational number is expressible as a terminating
or a recurring decimal.

To decimalise plq, we have first to divide/? by q and then each remainder,
after multiplication with 10, is to be divided by q to obtain the successive

figures in the decimal expression of p/q. The decimal expression will be
terminating if, at some stage, the remainder vanishes. Otherwise, the process
will be unending. In the latter case, the remainder will always be one of the
finite set of numbers 1,2....... tf1 and so must repeat itself at some stage.



* DIFFERENTIAL CALCULUS

From this stage onward, the quotients will also repeat themselves and the
decimal expression will, therefore, be recurring.

The student will understand the argument better if he actually expresses
some fractional numbers, say 3/7, 3/13, 31/123, in decimal notation.

Ex. 3. For what values ofx are the following equalities not valid :

(0 -!. W --*+.
- tan -

1*16. Representation of rational numbers by points along a line

or by segments of a line. The mode of representing rational numbers

by points along a line or by segments of a line, which may be known
as the number-axis, will now be explained.

We start with marking an arbitrary point O on the number-
axis and calling it the origin or zero point. The number zero will

be represented by the point O.

The point O divides the number axis into two parts or sides.

Any one of these may be called positive and the other, then negative.

o i Usually, the number-axis is
"

Q
-

"ft

- drawn parallel to the printed
lines of the page and the right

Fi - ! hand side of O is termed posi-
tive and the left hand side of O negative.

On the positive side, we take an arbitrary length OA, and call

it the unit length.

We say, then, that the number 1 is represented by the point A.

After having fixed an origin, positive sense and a unit length on
the number axis in the manner indicated above, we are in a position
to determine a point representing any given rational number as

explained below :

Positive integers. Firstly, we consider any positive integer,
m. We take a point on the positive side of the line such that its

distance from O is m times the unit length OA. This point will be
reached by measuring successively m steps each equal to OA starting
from O. This point, then, is said to represent the positive inte-.

ger, m.

Negative integers. To represent a negative integer, m, w<

take a point on the negative side of O such that its distance from
is m times the unit length OA.

This point represents the negative integer, m.

Fractions. Finally, let p\q be any fraction ; q being a positive

integer. Let OA be divided into q equal parts ;
OB being one

of them. We take $ point on the positive or negative side of O
according as p is positive or negative such that its distance from O is

p times (or, p timesjf p is negative) the distance OB.

The point so obtained represents the fraction, p\q*
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If a point P represents a rational number pjq, then the measure
of the length OP is clearly p\q or p\q according as the number is

positive or negative.

Sometimes we say that the number, p/q, is represented by the

segment OP.

1-2. Irrational numbers. Real numbers. We have seen in the

last article that every rational number can be represented by a

point of a line. Also, it is easy, to see that we can cover the line with

such points as closely as we like. The natural question now arises,

"Is the converse true ?" Is it possible to assign a rational number
to every point of the number-axis ? A simple consideration, as de-

tailed below, will clearly show that it is not so.

Construct a square each of whose sides is equal to the unit length
OA and take a point P on the nutnber-axis such that OP is equal in

the length to the diagonal of the square.
It will now be shown +hat the point P
cannot correspond to a rational number
i.e., the length of OP cannot have a

rational number as its measure. u 7i r
Fig. 2.

If possible, let its measure be a rational number pjq so that,

by Pythagoras's theorem, we have

= 2, i.e., p* 2q*. (0

We may suppose that p and q have no common factor, for, such

factors, if any, can be cancelled to begin with.

Firstly we notice that

so that the square of an even number is even and that of an odd
number is odd.

From thHtion (/),
we see, that p2

is an even number.
Therefore, p itlHpinst be even.

Let, the

Thus, #
2 is alsc

equal to 2n where n is an integer.

Hence p and #mfcrommo*factor 2 and this conclusion con-

traflicts the hypothesis thaPthej^fce no common factor. Thus the

measure -y/2 of OP is not a rationaffiumber. There exists, therefore^
a point on the number-axis not corresponding to any rational number,

Again, we take a point L on the line such that the length QL
is any rational multiple say, p/a, of OP.
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The length OL cannot have a rational measure. For, if possi-
ble, let m\n be the measure of OL.

p /0 m mq
-\/2=-- or \/2= >

q
v n v

p
'

which states that <\/2 is a rational number, being equal to mqjnp.

This is a contradiction. Hence L cannot correspond to a
rational number.

Thus we see that there exist an unlimited number of points on
the number-axis which do not correspond to rational numbers.

If we now require that our aggregate of numbers should be such
that after the choice of unit length on the line, every point of the
line should have a number corresponding to it (or that every length
should be capable of measurement), we are forced to extend our sys-
tem of numbers further by the introduction of what are called irra-

tional numbers.

We will thus associate an irrational number to every point of
the line which does not correspond to a rational number.

A method of representing irrational numbers in the decimal
notation is given in the next article 1-3.

Def. Real number. A number, rational or irrational, is called a
real number.

Theaggregate of rational and irrational number is, thus, the

aggregate of real numbers.

Each real number is represented by some point of the number-
axis and each point of the number-axis has some real number,
rational or irrational, corresponding to it.

Or, we might say, that each real number is the measure of some
length OP and that the aggregate of real numbers is enough to
measure every length.

1-21. Number and Point. If any number, say x, is represent-
ed by a point P, then we usually say that the point P is x.

Thus the terms, number and point, are generally used in an
indistinguishable manner.

1-22. Closed and open intervals, set a, b be two given numbers
such that #<6. Then the set of numbers x such thata^x^fe is

called a closed interval denoted by the symbol [a, b].

Also the set of numbers x such that a<x<b is called an
open interval denoted by the symbol (a,b).

The number b a is referred to as the length of [a, b] as also of

<. *).

1-3. Decimal representation of real numbers. Let P be any
given point of the number-axis. We now seek to obtain the decimal

representation of the number associated with the point P.
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To start with, we suppose that the point P lies on the positive
side of O.

Let the points corresponding to integers be marked on the
number-axis so that the whole axis is divided into intervals of length
one each.

Now, if P coincides with a point of division, it corresponds to an

integer and we need proceed no further. In case P falls between two

points of division, say a, a+ l, we sub-divide the interval (a, a+l)
into 10 equal parts so that the length of each part is T

1

T . The points
of division, now, are,

#, tf-f TIP

If P coincides with any of these points of division, then it corres-

ponds to a rational number. In the alternative case, it falls between
two points of division, say

i.e.,

o.av tf.K+1),

where, al9
is any one of the integers 0, 1, 2, 3, , 9.

We again sub-divide the interval

r ,

a,
,
<Ji+i n

L*
+ io' a+

10 J

into 10 equal parts so that the length of each part is 1/10
2

.

The points of division, now, are

fll _!_" 4_
l - i

a
>

.

2
//-u'

7
! .

9

io
fl+io + io'

The point P will cither coincide with one of the above points
of division (in which case it corresponds to a rational number) or will

lie between two points of division say

10*

i.e.,

where a2 is one of the integers 0, 1, 2, ...... , 9.

We again sub-divide this last interval and continue to repeat
the process. After a number of steps, say n, the point P will either

be found to coincide with some point of division (in this case it

corresponds to a rational number) or lie between two points of the

form



DIFFERENTIAL CALCULUS

the distance between which is 1/10* and which clearly gets smaller
and smaller as n increases.

The process can clearly be continued indefinitely.

The successive intervals in which P lies go on shrinking and will

clearly close up to the point P.

This point P is then represented by the infinite decimal

Conversely, consider any infinite decimal

and construct the series of intervals

[a, 0+1], [a.a& a.a^+l], [

Each of these intervals lies within the preceding one
; their

lengths go on diminishing and by taking n sufficiently large we can
make the length as near to zero as we like. We thus see that these in-

tervals shrink to a point. This fact is related to the intuitively
perceived aspect of the continuity of a straight line.

Thus there is one and only one point common to this series of
intervals and this is the point represented by the decimal

Combining the results of this article with that of Ex. 2, !!,
p. 3, we see that every decimal, finite or infinite, denotes a number which
is rational if the decimal is terminating or recurring and irrational in the

contrary case.

Let, now, P lie on the negative side of O. Then the number
representing it is

#-#i#2**#i ......

where

a.a^ ......an ......

is the number representing the point P' on the positive side oft? such
that PP' is bisected at O.

Ex. 1. Calculate the cube root of 2 to three decimal places.

We have I=*l<2and23=8>2.

l<3/2<2.
We consider the numbers

1,M, 1'2, ....... 1-9,2,

which divide the interval [1, 2] into 10 equal parts and find two successive nunv
bers such that the cube of the first is <2 and of the second is >2. We find that

Again consider the numbers

1-2, 1*21, 1-22 ...... , 1-29, l'3 r

which divide the interval [1*2, 1-3] into 10 equal parts.
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We find that

(l'25)
8 =l-953125<2and(l-26)

8-2'000376>2.

l-25<3/2<l-26.

Again, the numbers

1-25, 1-251, 1-752. ....... ,1*259,1-26

divide the interval [1-25, 1-26] into 10 equal parts

We find that

(1-259)=1-995616979<2 and (1'26)
8=2'000376>2

!-259<3/2<l-26.

Hence

Thus to three decimal places, we have

?/2=l-259.

Ex. 2. Calculate the cube root of 5 to 2 decimal places.

Note. The method described above in Ex. 1 which is indeed very cum-

bersome, has only been given to illustrate the basic and elementary nature or
the problem. In actual practice, however, other methods involving infinite

series or other limiting processes are employed.

1*4. The modulus of a real number.

Def. By the modulus of a real number, x, is meant the number

x, x or according as x is positive, negative, or zero.

Notation* The smybol \

x
\

is used to denote the modulus ofx.

Thus the modulus of a number means the same thing as ite

numerical or absolute value. For example, we have

|3 | =3;| -3
| =-(-3)=3; [ |

=0 ;

|
5-7

|

=
|
7-5

|
=2.

The modulus of the difference between two numbers is the

measure of the distance between the corresponding points on the

number-axis.

Some results involving moduli. We now state some simple and
useful results involving the moduli of numbers.

1-41.
| a+b |< |

a
|
+ |

b
| ,

i.e., the modulus of the sum of two numbers is less than or equal to the

sum of their moduli.

The result is almost self-evident. To enable the reader to see

its truth more clearly, we split it up into two cases giving exampfes-
of each.

Case 1. Let a, b have the same sign.

In this case, we clearly have

I a+6 I

=
|

a
| + |

b
|

.

e.g., | 7+3 |
=

|
7

| + |
3

| ,

and
|
-7-3

|
=

|
-7

| + I
-3

|
.
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Case II. Let a, b have opposite signs.

In this case, we clearly have

I a+b |
<

|

a
| + |

b
\

,

e.g., 4=
|
7-3

|
<

|

7
I
+

|

3
|

=10.
Thus in either case, we have

I a+b \ < \a\ + \b\ .

1-42.
|

ab
|

=
|
a

|

.
|

b
| ,

e.g., the modulus ofthe product of two numbers is equal to the pro-
duct of their moduli,

e.g-, |
4-3

|
=12=

|

4
|

.
|

3
|

;

| (-4)(-3) |

=12=
|

-4
|

.
|.
-3

| ;

1-43. If x, a, /, be three numbers such that

I

x
I <*> (^)

then

i.e., x lies between a I and a-\-l or that x belongs to the open interval

The inequality (A) implies thai the numerical difference between
a and x must be less than /, so that the point x (which may He to the

right or to the left of a) can, at the most, be at a distance / from the

point a.

a, d+t Now, from the figure, we clearly
see that this is possible, if and only

Fig 3 iff
x lies between a I and a+l.

It may also be at once seen that

I *-!<'
is equivalent to saying that, x, belongs to the closed interval

[a-l, a+l].

Ex. 1. // 1
a-b

| </, 1
b-c

\
<m, show that

\
a-c

|
</+/w.

We have
|

a-c
\

=
1
a-b+b c

\ < 1
a-b

\
+

\
b-c

\
<l+m.

2. Give the equivalents of the following in terms of the modulus

notation :

(0 -1<*<3. () 2<x<5. (m) -3<;t<7. (iv) /~s<x</+s.

3. Give the equivalents of the following by doing away with the modu-

lus notation :

(/) |
x_2

|
<3. (//) \x+\\ <2. (7) 0< |

x-\
|
<2.

4. If y= \

x
\
+ 1

jc 1
| , then show that

l 2x, fora;<0
forO<A:<l.
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1*5. Variables, Functions. We give below some examples to

enable the reader to understand and formulate the notion of a vari-

able and a function.

Ex. 1. Consider two numbers x and y connected by the relation,

"where we take only the positive value of the square root.

Before considering this relation, we observe that there is no
real number whose square is negative and hence, so far as real num-
bers are concerned, the square root of a negative number does not

exist.

Now, 1 jc
2

,
is positive or zero so long as x2 is less than or

equal to 1. This is the case if and only if x is any number satisfying
the relation

i.e., when x belongs to the interval [1, I].

If, now, we assign any value to x belonging to the interval

[ 1, 1], then the given equation determines a unique corresponding
value of y.

The symbol x which, in the present case, can take up as its

value any number belonging to the interval [ 1, 1], is called the

independent variable and the interval [1, 1] is called its domain o?

variation.

The symbol y which has a value corresponding to each value of

x in the interval [1, 1] is called the dependent variable or & function

of x defined in the interval
[" 1, 1].

2. Consider the two numbers x and y connected by the relation,

Here, the determination of y for x~2 involves the meaningless

operation of division by zero and, therefore, the relation does not

assign any value to y corresponding to jc=2. But for every other

value of x the relation does assign a value to y.

Here, x is the independent variable whose domain of variation

consists of the entire aggregate of real numbers excluding the number
2 and y is a function of x defined for this domain of variation of x.

3. Consider the two numbers x and y with their relationship

defined by the equations

y=^x* when x<0, ...(/)

y=x when 0<x<l, (")

y=ljx when x>l. ...(iii)

These relations assign a definite value to y corresponding to

every volue of x, although the value of y is not determined by a single
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formula as in Examples 1 and 2. In order to determine a value of

y corresponding to a given value of x, we have to select one of the
three equations depending upon the value of x in question. For

instance,

forx= 2, y=( 2)
2=4, [Equation (/) v 2<0

forx=, j=J [Equation (i7) v 0<J<1
for *=3, ^=| [Equation (in) v 3>1.

Here again, y is a function of x
9
defined for the entire aggregate

of real numbers.

This example illustrates an important point that it is not neces-

sary that only one formula should be used to determine y as a func-

tion of x. What is required is simply the existence of a law or laws

which assign a value to y corresponding to each value of x in its

domain of variation.

4. Let

Here y is a function of x defined for the aggregate of positive

integers only.

5. Let

Here we have a function of x defined for the entire aggregate of

real numbers.

It may be noticed that the same function can also be defined as

follows :

ys= x when

y= x when x<0.

6. Let

yt=z\lq f when x is a rational number plq in its lowest terms r

y=0 twhen x is irrational.

Hence again y is a function of x defined for the entire aggre-

gate of real numbers.

1*51. Independent variable and its domain of variation. The
above examples lead us to the following precise definitions of variable

and function. Ifxis a symbol which does not denote any fixed number
but is capable of assuming as its value any one of a set of numbers,,

then x is called a variable and this set of numbers is said to be its

domain of variation.

1*52. Function and its domain of definition. // to each value of
an independent variable x, belonging to its domain of variation, there

corresponds, by any law, or laws, whatsoever, a value of a symbol, y+
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then y is said to be a function ofx defined in the domain of variation of
K, which is then called the domain of definition of the function.

1*53. Notation for a function. The fact that y is a function of
a variable x is expressed symbolically as

is read as the '/' of x.

If x, be any particular value of x belonging to the domain of
variation of X 9 then the corresponding value of the function is denot-
ed by/(x). Thus, iff(x) be the function considered in Ex. 3, 1*5,

p. 11, then

If functional symbols be required for two or more functions,
then it is usual to replace the latter /in the symbol f(x) by other
letters such as F, G, etc.

1*6. Some important types of domains of variation.

Usually the domain of variation of a variable x is an interval

a, b], i.e., x can assume as its value any number greater than or

equal to a and less than or equal to 6, i.e.,

Sometimes it becomes necessary to distinguish between closed

and open intervals.

If x can take up as its value any number greater than a or less

than b but neither a nor b i.e., if a<x<b y then we say that its

domain of variation is an open interval denoted by (a, b) to distin-

guish it from [a, b] which denotes a closed interval where x can take

up the values a and b also.

We may similarly have semi-clos3(l or semi-opened intervals

[a, b), a<x<6 ; (a, b], a<x^b
as domains of variation.

We may also have domains of variation extending without
bound in one or the other directions i.e., the intervals

(00, b] or x<6 ; [a, GO
) or x>a ; (00 , oo

)
or any x.

Here it should be noted that the symbols 00,00 are no
numbers in any sense whatsoever. Yet, in the following pages they
will be used in various ways (but, of .course never as numbers) and
in each case it will be explicitly mentioned as to what they stand for.

Here, for example, the symbol ( 00, b) denotes the domain of vari-

ation of a variable which can take up as its value any number less

than or equal to b.

Similar meanings have been assigned to the symbols

(0, GO ), (00 , oo ).

Constants. A symbol which denotes a certain fixed number is

called a constant.
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It has become customary to use earlier letters of the alp}ifl,bet r

like a, h, c
; a, (J, yv

as symbols for constants and the latter letters

like JC, y, z
; w, v, w*as symbols for variables.

Note. The following points about the definition of a function should be

carefully noted :

1. A function need not be necessarily defined by a formula or formulae so
that the value of the function corresponding to any given value of the indepen-
dent variable is given by substitution. All that is necessary is that some rule or
set of rules be given which prescribe a value of the function for every value of

the independent variable which belongs to the domain of definition of the func-

tion. [Refer Ex. 6, page 12.]

2. It is not necessary that there should be a single formula or rule for the

whole domain of definition of the function. [Refer Ex. 3, page 11.]

Ex. 1* Show that the domain of definition o f the function

is the open interval (I, 2).

For x=l and 2 the denominator becomes zero. Also for x<l
and x>2 the expression (1 -Jt) (x 2) under the radical sign becomes

negative.

Thus the function is not defined for *<; 1 and x^2. For x>l
and <2 the expression under the radical sign is positive so that a
value of the function is determinable. Hence the function is defined

in^heopen interval (1, 2).

2. Show that the domain of definition of the "function ^[(1 x) (A* 2)] is

the closed interval [1, 2].

3. Show that the domain of definition of the functions

are (0, oo) and (
oo

, 0) respectively.

4. Obtain the domains of definition of the functions

(0 ^(2x+l) (//) 1/U+ cos A-) (iii) V(l-f-2 sin x).

1-7. Graphical representation of functions.

Let us consider a function

y=f(x)

defined in an interval [a, b]. ... (/)

To represent it graphically, we take two straight lines X'OX
fwid Y'OY at right angles to each other as in Plane Analytical
Geometry* These are the two co-ordinate axes.

We take O as origin for both the axes and select unit intervals

on OX, OF (usually of the same lengths). Also as usual, OX, OY
arq taken as positive directions on the two axes.

To any number x corresponds a point M on Jf-axis such that
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To the corresponding number y, avS determined from (/), there

corresponds a point N on K-axis such that

N
y

o

Completing the rectangle OMPN, we obtain a point P which is

said to correspond to the pair of y*
numbers x, y.

Thus to every number x be-

longing to the interval [<?, b], there

corresponds a number y determined

by the functional equation yc=f(x)

and to this pair of numbers, x, y

corresponds a point P as obtained

above. Fig% 4

The totality of these points, obtained by giving different values,
to x, is said to be the graph of the function /(;c) and y=f(x) is said to"

be the equation of the graph.

Examples

1. The graph of the function considered in Ex. 3, 1'5,

page 11, is

Fig. 5

2. The graph of >>
=

(jc
2

excluding the point P(l, 2).

1) is the straight line y=x-\-l

o

Fig. 6

3. The graph of y=*x \ consists of a discrete set of points-

(1, 1), (2, 2), (3, 6), (4, 24), etc.
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4. The graph of the function

x, when

1, when

I x when

is as given.

Fig. 7

5. Draw the graph of the function which denotes the positive

square root o/x2
.

As *v/x
a=jc or x according as x is positive or negative, the

graph (Fig. 8) of V*2
*s the graph of the function /(x) where,

x, when xif
=H

x, when x<0.

o

Fig. 8 Fig. 9

The student should compare the graph (Fig. 8) of \/*
2 with the

graph (Fig. 9) of x.

The reader may see that

6. Draw the graph of
>- *

Fig. 10

We have

{

x+lx=l 2x when x<0,
x+lx=l when 0<x
x+x ^l=2x 1 when

Thus we have the graph as

drawn :

The graph consists of parts of
3 straight lines

,,
^

corresponding to the intervals

^-oo,0]. [0, !],[!, x).
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7.
* Dawn the graph of

[*],
where [x] denotes the greatest integer not greater than x.

We have f 0, for <*<!,
y=4 1, for 1 <x<2,

1^2, for 2 <ix<3 and so on.

The value of y for negative values of x can also be similarly

given.

The right-hand end-point of each segment of the line is not a

point of the graph.

Yk ~

O

Fig. 11.

Exercises

1 . Draw the graphs of the following functions :

1, when A-<CO ( -v w *

-l,when.v>0 <)/(*) =
{!-*,

x, when OjcCjc^i ,.^ f ,^ ! . ,

2-*, when^v^i (")/(*) = ^ 1, when x= 4 ;

<0/(*) =
, when

, when

1 A, when

f A-2 when A<TO f I/*. when ^<
_ ^

A , wften x^u ,

(v/)/(A-) - ^ 0, when A= :

\ ^v, when A>0;
^ -l/jc.whe

2. Draw the graphs of the following functions :

x.x ^*2
,.^ , ^(x-\)

2

(/) 00 x +

The positive value of the square root is to be taken in each case.

3. Draw the graphs of the functions :

(0 |*|. (//) |*| + |x+ l|. (///) 2|*-1 | +3|
4. Draw the graphs of the functions :

W MV () M + [*fl]
where [*] denotes the greatest integer not greater than x.



CHAPTER II

SOME IMPORTANT CLASSES OF FUNCTIONS AND
THEIR GRAPHS

Introduction. This chapter will deal with the graphs and some

simple properties of the elementary functions

xn
,
ax , loga x ;

sin x, cos x, tan x, cot x, sec x, cosec x ;

sin~1
x, cc5s~ 1

x, tan"~3
x, cot~ 1

x, sec^x, cosec-3*.

The logarithmic function is inverse of the exponential just as the

inverse trigonometric functions are inverses of the corresponding
trigonometric functions. The trigonometric functions being periodic,
the inverse trigonometric are multiple-valued and special care has,

therefore, to be taken to define them so as to introduce them as single-
valued.

2-1. Graphical representation of the function

y=x* ;

n being any integer, positive or negative.

We have, here, really to discuss a class of functions obtained by
giving different integral values to n.

It will be seen that, from the point of view of graphs, the whole
of this class of functions divides itself into four sub-classes a&

follows :

(i) when n is a positive even integer ; (//) when n is a positive odd

integer ; (Hi) when n is a negative even integer (iv) when n is a negative
odd integer.

The functions belonging to the same sub -class will be seen to

have graphs similar in general outlines and differing only in details.

Each of these four cases will now be taken up one by one.

2-11. Let n be a positive even integer.

following are, obviously, the properties of the graph
of y=xn whatever positive even integral
value, n may have.

(i) ^=0, when x=0
;

y=l, when x=l
;

>>=!, when x= 1.

The graph, therefore,

through the points,
O (0,0), A (1,1), A' (-1, 1).

(ii) y is positive when x is posi-
tive or negative. Thus no point on the

graph lies in the third or the fourth

quadrant.

18

The

passes

(it, a positive even integer)

Fig. 12.
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(wi) We have

so that the same value of y corresponds to two equal and opposite
values of x. The graph is, therefore, symmatrical about the .y-axis.

(iv) The variable y gets larger and larger, as x gets larger and

larger numerically. Moreover, y can be made as large as we like by
taking x sufficiently large numerically. The graph is, therefore, not

closed.

The graph of y=x* 9
for positive even integral value of n is, in

general outlines, as given in Fig. 12. page. 18.

2-12. Let n be a positive odd integer.

The following are the properties of y=xn
,
whatever positive

odd integral value n may have. ^

(i) ^=0, whenx^O;
y 1, when x=l ;

The graph, therefore, passes

through the points

0(0,0), ,4 (I, I), ,4'(-l,-l)
(//') y is positive or negative

according as x is positive or nega-
tive.

Thus, no point on the graph
lies in the second or the fourth

quadrant.
(n, a positive odd integer)

Fig 13.

(///) The numerical value of y increases with an increase in the
numerical value of x.

Also, the numerical value ofy can be made as large as we like

by taking x sufficiently large numerically.

2-13. Let n be a negative even integer, say, m> (w>0).

Here,

xn _______ ~~
1

-

xm

\U,D

o x

=x
9 (n, a negative even integer)

Fig. 14

The following are the

properties of y xn whatever

negative even integral value,
n, may have

(i) Determination of y
for x=Q involves the meaning-
less operation of division by
and so y is not defined for
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(fl) y=l when x=l or 1, so that the graph passes through
the two points A (I, l)andX'(-l, 1).

(itt) y is positive whether x be positive or negative. Thus no

point on the graph lies in the third or in the fourth quadrant.

(IF) We have

so that the same value of y corresponds to the two equal and
opposite values of x. The graph is, therefore, symmetrical about

jr-aaris.

(p) As x, starting from 1, increases, xm also increases so that y
decreases. Alsojy can be made as small as we like (i.e., as near zero
as we like) by taking x sufficiently large.

Again, as x, starting from 1, approaches zero, xm decreases so
that y increases. Also y can be made as large as we like by taking x
sufficiently near 0.

The variation of y for negative values of x may be, now, put
down by symmetry.

2-14. Let n be a negative odd integer.

The statement of the various

properties for this case is left to the

reader. The graph only is shown

here. (Fig. 15)
VJ)

2*2. Before considering the
*

graphs of other functions, we allow

ourselves some digression in this

article to facilitate some of the

later considerations.

2-21. Monotonic functions.

+. a negat^ odd integer^
Increasing or decreasing functions.

Fig. 15.

Det L A function y=*f(x) is called a monotonically increasing

function in an interval if it is such that throughout the interval a larger

value of x gives a large value of y, i.e., an increase in the value of x

always causes an increase in the value of y.

Def. 2. A function is called a monotonically decreasing function,

ifHis such that an increase in the value of x always causes a decrease

in the value of the function.

Thus, if *i and xa axe any two numbers in an interval such that
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then for a monotonically increasing function in the interval

and for a monotonically decreasing function in the interval

A function which is either monotonically increasing or decreas-

ing is called a monotonic function.

Ex. Show that for a monotonic function /(x) in an interval (a, 6), the
fraction

keeps the same sign for any pair of different numbers, x l9 x, of (a, 6).

Illustration. Looking at the graphs in 2*1, we notice that
xn is

(/) monotonically decreasing in the interval ( 00, 0) and mono-

tonically increasing in the interval [0, oo] when n is a positive even

integer ;

(//') monotonically increasing in the intervals [ oo, 0], [0, oo ]
when n is a positive odd. integer.

(in) monotonically increasing in the interval ( 00,0) and mono-

tonically decreasing in the interval (0, oo) when n is a negative even

integer.

(iv) .monotonically decreasing in the intervals (00, 0), (0, oo)
when n is a negative odd integer.

2-22. Inverse functions.

Let

y=Ax) ...(1)

be a given function of x and suppose that we can solve this equation
for x in terms of y so that we may write x as a function of y, say

x=*(y). .-.(2)

Then <p(y) is called the inverse of f(x).

This process of defining and determining the inverse of a given
function may be accompanied with difficulties and complications as

illustrated below ;

(i) The functional equation (1) may not always be solvable for

x as a function of y as, for instance, the case

(ii) The functional equation (1) may not always determine a
unique value of y in terms of x as, for instance, in the case of the

functional equation

j= l+xa
, ...(3)

which, on solving for x, gives ,

,
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so that to each value ofy there correspond two values of x. This
situation is explained by the fact that in (3) two values of x which
are equal in absolute value but opposite in sign give rise to the same
value of y and so, conversely, to a given value of y there must natur-

ally correspond two values of x which gave rise to it.

We cannot, therefore, look upon, x, as a function of, y, in the
usual sense, for, according to our notion of a function there must

correspond just one value of, jc, to a value of, y.

In view of these difficulties, it is worthwhile to have a simple
test which may enable us to determine whether a given function

y=f(x) admits of an inverse function or not.

If a function y=f(x) is such that it increases monotonically in an
interval [a, b] and takes up every value between its smallest value f(d)
and its greatest value f(b), then it is clear that to each value of y
between f(a) and /(/>), there corresponds one and only one value
ofx which gave rise to it, so that *is a function of y defined in the
interval [f(d)> f(b)}.

Similar conclusion is easily reached if y decreases monotoni-

cally.

Illustrations of this general rule will appears in the following
articles.

2*3. To draw the graph of

JL

y=x* ;

n being any positive or negative integer.

From an examination of the graph of y~xn drawn in 21, or

even otherwise, we see that y=xn

(i) is monotonic and positive in the interval (0, oo
) whatever

integral value n may have ;

(11) takes up every positive value.

Thus, from 2*2 or otherwise, we see that to every positive
value of y there corresponds one and only one positive value of x
such that

y=x n or xy^ .

Thus

determines jc as a function of y in the interval (0, oo
) ;

x being also

always positive.
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The part of the graph of y~xn
, lying on the first quadrant, is

also the graph of x=y n
.

y*

o

when n is a positive integer.

Fig. 16.

when n is a negative integer.

Fig. 17.

i

To draw the graph ofy~x H when x is independent and y
dependent, we have to change the point (h, k) in

t

i
n

j,

to the point (k, h) i.e., find the reflection of the curve

in the line y=x. This is illustrated in the figure given below.

Cor. xp u means (.x^)
1 /? where the

root is to be taken positively and x is also

positive.

Note. It may be particularly noted that
in order that x lfn may have one and only one

value, we have to restrict x to positive values

only and x l l
n

is then to be taken to mean the

positive nth root of x.

It is not enough to say that x lln is an
nth root of x ; we must say the positive wth root

o/the positive number x.

For, if n be even and x be positive, then x
has two nth roots, one positive and the other

negative, so that the nih root is not unique and
if n be even and x be negative, then x has no nth
root so that xlln does not exist.

Thus x and x1 /" are both positive.

2-4. The exponential function a*. The meaning of a* when a is

positive and x is any rational number, is already known to the
student. (It has also been considered in 2*3 above). To give the

rigorous meaning of a* when the index, x is irrational is beyond the

scope of this book. However, to obtain some idea of the meaning of
a? in this case, we proceed as follows :

X

when n is a positive integer.

Fig. 18.
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We find points on the graph of y=a* corresponding to the
rational values of x. We then join them so as to determine a conti-
nuous curve. The ordinate of the point of this curve corresponding
to any irrational value of x as its abscissa, is then taken to be the
value of a* for that particular value.

Note. The definition of a* when x is irrational, as given here, is incom-
plete in as much as it assumes that what we have done is actually possible and
that also uniquely. Moreover it gives no precise analytical way of representing
a* as a decimal expression.

Graph ofy=az
. In order to draw the graph of

y*=<f>
we note its following properties :

2-41. Leta>l.

(i) The function a* is always positive whether x b3 positive or

negative.

(//) It increases monotonically as x increases and can be made as

large as we like by taking x sufficiently large.

(ill) tf=l so that the point (0, 1) lies on the graph.

(iv) Since a*~\\a~*',
we see that a* is positively very small when

. x is negatively very large and can

be made as near zero as we like

provided we give to x a negative

value which is sufficiently large nu-

merically.

With the help of these facts,

we can draw the graph which is

as shown in (Fig. 19).

Fig. 19.

2-42. LetQ<a<\.

(i) The function a* is always positive whether x be positive

or negative.

(//) It decreases monotonically as x increases and can be made
as near zero as we like by taking x

sufficiently large.

(ill)
fl=l. Therefore the point

(0, 1) lies on the graph.

(iv) Since ax~\\cr
x

,
we see that

cf is positively very large when x is

negatively very large/ Also it can be

made as large as we like if we give to x
a negative value which is sufficiently

large numerically.

Thus we have the graph as drawn
in (Fig. 20).

Fig. 20.
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Note 1. In the case of the function a* it is the exponent x which is a
variable and the base is a constant. This is the justification for the name
"Exponential function" given to it. For the function x n

, the base is a variable
and the exponent is a constant.

Note 2. a* never vanishes and is always positive :

Ex. Draw the graphs of the functions :

(i) 2
1 /*

</<) 2
1 /*"

(iiflZ-
1 /* WZ- 1

/*'.

2-5. Graph of the logarithmic function

y-logax ;

a, x being any positive numbers.

We know that

y=a*
can be written as

We have seen in 2'4 that y~a* is monotonic and takes up
every positive value as x increases taking 'all values from oo

to -f-o> .

Thus to any positive value of y there corresponds one and only
one value of x.

In the figure of 2*4, we take y as independent variable and

suppose that it continuously varies from to GO . Thus we see that

(/')
x monotonically increases from x to oo

,
if

(//')
.x monotonically decreases from oo to x , if

Also, x=.0 for y~l.
Considering the functional equation

y=logax,

we see that as the independent variable x varies from to oo the

dependent variable y monotonically increases from oo to oo if

and monotonically decreases from oo to oo if

Also, y=Q for x= l.

We thus have the graphs as drawn.

Fig. 21. Fig. 22,

Note. The graph of>'=log3 ;t is the reflection tfy=a* in the line .y
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Some important properties of lo&x.

We may, now, note the following important properties of

(i) logax is defined for positive values of x only and the base a
is also positive.

(ii) If a>l, log^x can be made as large as we like by taking x

sufficiently large and can be made as small as we like by taking x

sufficiently near 0,

For #<1, we have similar statements with obvious alterations.

(i/O loga 1=0.

When fl>l, we have, logax>0, if x>l, and logax<0, if x<l ;

When 0<1, we have, logax<0, if x>l, and logax>0, if x<l.

2*6. Trigonometric functions.

It will be assumed that the student is already familiar with the

definitions, properties and the nature of variations of the fundamental

trigonometrical functions sin x, cos x, tan x, cot x, sec x and cosec x.

The most important property of those functions is their periodic

character, the period for sin x, cos x, sec x, cosec x being 2?r and that
for tan x, cot x being TT.

We will only produce their graphs and restate some of their

important and well known properties here.

2-61. y-sin x.

,1\

Fig. 23.

(i) It is defined for every value of x.

(ii) It increases monotonically from 1 to 1 as x increases from

7r/2 to 7T/2 ;
it decreases monotonically from 1 to 1 as x increases

from Tr/2 to 3?r2, and so on.

(Hi) 1 < sin x <1, i.e.,
|

sin x
[
<1, whatever value x may

have.
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Fig. 24.

(i) It is defined for every value of x.

(11) It decreases monotonically from 1 to 1 as x increases from
to TT ;

and so on.

(/) )

cos x
)
< 1 whatever value x may have.

2-63. y^tan x.

Fig. 25.

(i) It is defined for all values of x excepting

i.e., (2 + l)7r/2, where n is any integer, positive or negative. It fact

it will be recalled that for each of these angles the base of the right-

angled trangle which defines tan x becomes and so the definition of

tan jc, as being the ratio of height to base, involves division by
which is a meaningless operation.



28 DIFFERENTIAL CALCULUS

(if) It increases monotonically from oo to +00 as x increases
from 7T/2 to 7T/2 ; it increases monotonically from oo to +00 as
x increases from 7T/2 to 37T/2, and so on.

(Hi) It can bfe made positively as large as well like provided
we take

x<7r/2 and sufficiently near to it ;

and can be made negatively as large as we like provided we take

x> 7T/2 and sufficiently near to it.

2-64. yr=cot x.

n

Fig. 26.

(i) It is defined for all values of x excepting

4?r, STT, 27r, TT, 0, TT, 2?r, STT, 47T,

i.e., nir, where w has any integral value, since for each of these angles
the height of the right-angled triangle which defines cot x is zero and
the definition of cot x being the ratio of base to height involves

division by zero.

() It decreases monotonically from oo to <x> as x increases

/rom to TT ; it decreases monotonically from oo to GO as x increases

from TT to 2?r ;
and so on.

(iii) It can be made positively as large as we like provided
we take

x>0and sufficiently near to it
;

and can be made negatively as large as we like provided we take

x<0 and sufficiently near to it.
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2-65.

Fig.

It is defined for all values of A: excepting

i.e., (2n+ l) ?r/2, where n has any integral value, since for each of
these angles, the base of the right angled triangle which defines
sec x is zero and as such the definition of sec x involves division by
zero.

(11) |

sec x
j ^1 whatever value x may have.

(ill) It increases monotonically from 1 to oo when x increases
from to Tr/2 ;

it increases monotonically from oo to 1 when x
increases from ?r/2 to TT, and so on.

(zv) It can be made positively as large as we like by taking
x<7r/2 and sufficiently near to it ;

and can be made negatively as large as we like by taking

x>ir/2 and sufficiently near to it.

2-66. y=cosec x.

Fig. 28.
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(i) It is defined for all values of x excepting

"STr, -27T, TT," 0, TT, 27T, OTT,

i.e., nit, when n has any integral value.

(ii) |
cosec x

\ ^ 1 whatever value x may have.

(lii) It decreases monotonically from -1 to oo as~""x increases

from 7T/2 to
;
it decreases monotonically from oo to]*l as jc in-

creases from to 7T/2.

(iv) It can be made positively as large as we like by taking

x>0 and sufficiently near to it
;

and can be made negatively as large as we like by taking

x<0 and sufficiently near to it.

2-7. Inverse trigonometrical functions. The inverse trigono-
metrical functions

sin-1
*, cos-1

.*, tan- 1
*, cot~ l

jc, sec-1
*, cosec-1x

are generally defined as the inverse of the corresponding trigono-
metrical functions. For instance, sin" 1* is defined as the angle whose
sine is x. The definition, as it stands, is incomplete and ambiguous
as will now be seen.

We consider the functional equation

x== sin y ... (/)

where y is the independent and x the dependent variable.

Now, to each value of y t there corresponds just one value of x
in (i). On the other hand, the same value of x corresponds to an
unlimited number of values of the angle so that to any given value
of x between 1 and I there corresponds an unlimited number of

values of the angle y whose sine is x. Thus sin"1
A*, as defined above,

is not unique.

The same remark applies to the remaining trigonometric func-

tions also.

We now proceed to modify the definitions of the inverse

trigonometrical functions so as to remove the ambiguity referred to

here.

271. y-sin^x.

Consider the functional equation

;c=sin>>.

We know that as y increases from Tr/2 to w/2, then x increases

monotonically, taking up every value between 1 and 1, so that to

each value of x between 1 and 1 there corresponds one and only one
value of y lying between ?r/2 and Tr/2. Thus there is one and only
one angle lying between 7T/2 and ir/2 with a given sine.



GRAPHS

Accordingly we define sin-1* as follows :

sin~lx is the angle lying
between Tr/2 and Tr/2, w^ose
5/ne w x.

To draw the graph of

y= sin-1
*,

we note that ^___
(i) y increases monotoni-

cally from Tr/2 to ?r/2 as x
increases from 1 to 1.

(if) sin- 1 0=0,

(fff) sin-1* is defined in

the interval [ 1, 1] only. Fig. 29.

We, thus, have the graph as drawn.

Note 1. We know that if x^siny, then ovaries monotonically taking up
every value between 1 and 1 as y increases from w/2 to 3w/2, 3^/2 to 5w/2, and
soon. Thus the definition could also have been equally suitably modified by

restricting sin-'a to any of the intervals (w/2, 3*/2), (3*/2, fiw/2) instead of

( 7T/2, tf/2). What we have done here is, however, more usual.

Note 2. The graph of^sin- 1
.*? is the reflection of .y sin x in the line

2*72. y=cos""
J x.

Consider the functional equation
A: cos y.

We know that as y increases from to TT, then x decreases

monotonically taking up every value between 1 and 1. Thus, there

is one and only on? an^lc, lyiiva; botwean and TT, with a given cosine.

Accordingly we define cos~ !x as follows :

cos-*x is the angle lying between and TT, whose cosine is x.

To draw the graph of

we note that

(/) y decreases monotonically
from TT to as x increases from

1 to 1.

(/I) COS"1
( 1)=7T, COS^O^TT^

Fig. 30, cos-Ml)= 0.

(MI) cos- 1^ is defined in the interval [ 1, 1] only.

Note. We know that x^cosy varies mondtonically, taking up every

value between -1 and 1 as y increases from w to 2w, 2* to 3* and so .on. Thus

the definition could also have been equally suitably modified ty restricting

cos-1 x to any of the intervals, [, 2w], [2*, 3*] etc., instead of (On).
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2-73. y=tair*x.
We consider the functional equation

x=tan y.

We know that as y increases from 7T/2 to 7T/2, then x increases

monotonically from 00 to oo taking up every value. Thus there is

one and only one angle between 7T/2 and 7T/2 with a given tangent.
Accordingly we have the following definition of tan-1 x :

tari~lx is the angle, lying between TT/ 2 and Tr/2, whose tangent
isx.

X

Fig. 31

To draw the graph (Fig. 31) of

note that y increases monotouically from ?r/2 to Tr/2 as x in-

creases from oo to oo and then tan*" 1 0=0.
2-74. y==cot-

1 x.

Consider the functional equation
x=cot y.

We know that as y increases from to TT, then x decreases

monotonically from 4-a> to oo taking up every real value. Thus,
there is one and only one angle between and TT with given cotan-

gent.
In view of this, we define cot" 1 x as follows :

cot~\ x is the angle, lying between and TT, whose cotangent is x.

n

o

Fig. 32
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To draw the graph (Fig. 32) of

y=COt~l
X,

we note that y decreases monotonically from TT to as x increases

from oo to oo and cot" 1
0=7r/2.

2-75. y^sec^x.
Consider the functional equation

X=9eC y.

We know that as y increases from to ?r/2, then x increases

monotonically from 1 to oo ;
also as y increases from 7T/2 to TT, then

X increases monotonically from oo to 1.

Thus, there is one and only one value of the angle, lying between

and TT, whose secant is any given number, not lying between 1

and 1. The following is, thus, the precise definition of sec lx :

sec-1 x is the angle, lying between and TT, whose'$eant is x.

To draw the graph of

y=secr* x,

we note that y increases from to ?r/2 as x increases from 1 to oo and

y increases from Tr/2 to TT as x increases from oo to 1 . Also

sec- 1 1=0, and sec- 1
( l)=7r.

Ylk

Fig. 33

2-76. y=cosec-
1x.

Consider the functional equation

x=cosec y.

We know that asj; increases from 7T/2 to 0, then x decreases

monotonically from 1 to oo and as y increases from to ?r/2, it

decreases monotonically from oo to 1 . Thus there is one and only one

value of the angle lying between ?r/2 and Tr/2 having a given
cosecant. We thus say that

cosec" 1 x is the angle, lying between ?r/2 and *r/2, whose

cosecant is x.

To draw the graph of
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we note that y decreases from to ?r/2 as x increases from -

J any y decreases from ?r/2 to as x increases from 1 to oo.

oo to

Fig. 34

Ex. What other definitions of tan- 1
*, cot- 1

*, sec- 1* and cosec- 1* would
have been equally suitable.

in- 1
*, cos-1

*, tan- 1
*, cot-1

*, sec-1* and

*, cos *, tan *, cot *, sec * and cosec *
Note. The graphs of j^s

sosec-1* are the reflections of y

fespectively in the line yx.
2-8. Function of a Function. The notion of & function offunction

will be introduced by means of examples.

Ex. 1, Consider the two equations

>>=sinw. ...(2)

To any given value of *, corresponds a value of u as deter-

mined from (1) and to this, value of w, corresponds a value ofy as

determined from (2) so that we see that y is a function of u which is-

again a function of x, i.e., y is a function of a function of x.

From a slightly different point of view, we notice that since the
two equations (I) and (2) associate a value of y to any given value

3fx, they determine y as a function ofx defined for the entire aggre-

gate of real numbers.

Combining the two equations, we get

j>=8in x2

which defines y directly as a function of x and not through the inter-

mediate variable w.

Ex. 2. Consider the two equations
w=sin x, .(!)

y=\ogu. ...(2)

The equation (1) determines a value of u corresponding to every
given value of x. The equation (2) then associates a value of y to
this value of u in case it is positive. But we know that u is positive
if and only if x lies in the open intervals

...............(~47T, ~37T), (-27T, -7T), (0, W ) f (2*, 3*} ..,(3)
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Thus these two equations define y as a function of x where the.

domain of variation of x is the set of intervals (3).

General consideration.

Let

and

be two functional equations such that/(x) is defined in the interval

[a, b] and <f> (u) in [c, d].

Let, further, each value of f(x) lie in [c, d\.

Clearly, then, these two equations determine y as a function of

x defined for the interval [a, b}.

2-9. Classification of functions. Algebraic and Transcendental.

Any given function is either

(i) Algebraic or (ii) transcendental.

A function is said to be algebraic if it arises by performing upon the

variable x and any number of constants a finite number of operations

of addition, subtraction, multiplication, division and root extraction.

Thus,

y=x+7jc+3, y=(7x2
+2)/(3;c

4+ 5;c
2
), y^V(*+ 3\/*

8+ Vx)

are algebraic functions.

A function is said to be transcendental if it is not algebraic.

The exponential, logarithmic, trigonometric and inverse trigono-
metric functions are all transcendental functions.

Two particular cases of algebraic functions. There are two speci-

ally important types of algebraic functions, namely,

(/) Polynomials ;

(ii) Rationalfunctions.

A function of the type

where #
, #,, ......... ,

am are constants and m is a positive integer,
is called a polynomial in x.

A function which appears as a quotient of two polynomials
such as

aQx
m +al

xm-*+ ...+am^x+a

is called a rationalfunction of x.

A rational function of x is defined for every value of x exclud-

ing those for which the denominator vanishes.
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Exercises

1. Write down the values of

(/) sin-H, (11) tan-i(-l), (///) sec~i 2, (iv) cos-1 (~i).

2. For what domains of values of the independent variable are the following,

functions defined :

(//) loga sinx.

[Sol. (/) sin-Nx is defined only for those values of x for which

and this will be the case if, and only if,

50 that sin-Nx is defined in the interval [0, 1].

O'O log sin x is defined only for the values of x for which

sin x>0
I.*., in the open intervals

(0, *), (2n, 3*), ......

or generally in (2nn, 2/i-f-l *) ; n being any integer.

(ill) log sin-i*. (iv) log [ (1 +*)/(! -x) ]
.

(v) log [ (x-H)/(x-l) ] (v/) log (tan-'x

(v/0 (sin x)*. (viii) (Iog6 x)^.

(ix) log [x+>J(x
2~

1) ]. (x) x tan-ix.

3. Find out the intervals in which the following functions are monotoni-

cally increasing or decreasing :

(02*. (//) (i)*- (ill) 3
1 ''*'

(iv) 4l/x2
'

(v) 2sinx.

4. Distinguish between the two functions

1 .

x,

G)



CHAPTER III

CONTINUITY AND LIMIT

Introduction. The statement that a function of x is defined in a certain

interval means that to each value of x belonging to the interval there corres-

ponds a value of the function. The value of the function for any particular value

of x may be quite independent of the value of the function for another value of x

and no relationship in the various values of a function is implied in the defini-

tion of a function as such.

Thus, if *!, xa are any two values of the independent variable so that

/(*i) /(*) are the corresponding values of the function fix), then
| /(*2)-/(*i) I

may be large even though |
xa --x,. I i?

small. It is because the value /(x,)

assigned to the function for x=x2 is quite independent of the value /(x^ of the

function for x=xt .

We now propose to study the change I /(x?)-/(x,) |
relative to the

change | Xg-Xi | by introducing the notion of continuity and discontinuity of

a function.

In the next article, we first analyse the intuitive notion of continuity that

we already possess and then state its precise analytical meaning in the form of

a definition.

31. Continuity of a function at a point. Intuitively, continuous

variation of a variable implies
absence of sudden changes while it

varies so that in order to arrive at a suitable definition of continuity,

we have to examine the precise meaning of this implication in its

relation to a function /(x) which is defined in any interval [a, b]. Let,

r, be any point of this interval.

The function f(x) will vary continuously at x=c if, as x changes

from c to either side of it, the change in the value of the function is

not sudden, i.e., the change in the value of the function is small if

only the change in the value of x is also small.

We consider a value c-f-/* of x belonging to the interval [tf, b].

Here, h, which is the change n the independent variable x, may be

positive or negative.

Then,/(c+A) f(c), is the corresponding change in the depen-

dent variable /(x), which, again, may be positive or negative.

For continuity, we require that c+h)f(c) should be

numerically small, if h is numerically small. This means that

|yjr
c _|_/j)_y(c) |

can be made as small as we like by taking |

h
\

sufficiently small.

The precise analytical definition of continuity should not involve the US6

of the word small, whose meaning is definite, as there exists no definite and

absolute standard of smallness. Such a definition would now be given.

To be more precise, we finally say that

A function /(x) is continuous at x= c if, corresponding to any

positive number, c, arbitrarily assigned, there exists a positive number S

such that

\f(c+h)-f(c)
37
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for all values of, h, such that

This means that/(c+A) lies between /(c) e and /(c)+c for all

values of h lying between 8 and 8.

Alternatively, replacing c+h by x, we can say that

f(x) is continuous at x=c, if there exists an interval (c 8, c-f 8)

around c such that, for all values ofx in this interval, we have

F g. 35.

c being any positive number arbitrarily assigned.

Meaning of continuity explained graphically. Draw the graph of

the function /(x) and consider the point P[c,/(c)] on it.

Draw the lines

which lie on different sides of
the point P and are parallel to

x-axis.

Here, e is any arbitrarily

assigned positive number and
I measures the degree of close-

ness of the lines (1) from each
other.

The continuity of/(x) for

x=c, then, requires that we
should be able to draw two
lines

x=c 8, x=c+S, ...(2)

which are parallel to >>-axis and which lie around the line x=c, such

that every point of the graph between the two lines (2) lies also

between the two lines (1).

311. Continuity of a function in an interval. In the last

articles, we dealt with the definition of continuity of a function /(x)

at a point of its interval of definition. We now extend this definition

to continuity in an interval and say that

A function /(x) is continuous in an interval [a, &], if it is continuous

at every point thereof.

Discontinuity. A function /(x) which is not continuous for x=c is

said to be discontinuous for xc.
The notion of continuity and discontinuity will now be illustra-

ted by means of some simple examples.

Examples

1. Show that

is continuous at x=l.
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Here,

-and

We will now attempt to make the numerical value of this

difference smaller than any preassigned positive number, say '001.

(/) Let x>\, so that 3(# -1) is positive and is, therefore, the

numerical value off(x) /(I).

Now

|/(*)-/(l)| =3(x-l)<-001,
if

x-KOOl/3
ie., if

x<l+-001/3=*l-0003. -..(0

(11) Let JC<1, so that 3(x 1) is negative and the numerical
value of/(jc)-/3;i) is 3(L-x).

Now
| /(*)-/(!) I =3(l-*)<-001,

if

l-x< 001/3,
i.e., if

'

l~-001/3<x,
or

Combining (/) and (//'),
we seo that

| /(*)-/(!) | <-001,
for all values ofx such that

1 -0003 < x <1 +-0003.
The test of continuity for x~l is thus satisfied for the parti-

cular value -001 of e. We may similarly show that the test is true for

the other particular values of e also.

The complete argument is, however, as follows :

Let e be any positive number. We have

Now
3 |x-

if

|*-
i.e

, if

l-e/3 < x < l+e/3.

Thus, there exists an interval (1 e/3, l+ e/3) around 1 such
that for every value of x in this interval, the numerical value of the

difference between f(x) and /(I) is less than a preassigned positive
number e. Here S=e/3,

Hence/(x) is continuous for x=l.
Note* lit may be shown that, 3;c-M, is continuous for every value of x.
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2. Show f/Ktf /(x)=3x
2+2x 1 is continuous for x= 2.

Let e be any given positive number. We have

=
| 3x*+2x-l-15 |

= I x-2
| |

3x+8
|

.

We suppose that x lies between 1 and 3. For values of x
between 1 and 3, 3x+ 8 is positive and less than (3*3+8)= 17.

Thus when

we have

Now
17

|

x-2
| <e/17.

Thus, we see that there exists a positive number e/17 such that

if

,

when

|

x-2
| <e/17.

Therefore /(x) is continuous for x=2.
Note. It may be shown that 3x*-f2x 1, is continuous for every value

3. Prove that sin x is continuous for every value of x.

It will be shown that sin x is continuous for any given value of
x

; say c.

Let e be any arbitrarily assigned positive number. We have

| /(x) /(c) |

=
|

sin x sin c
\

. x+c . x c=
1

2 cos -~ sin

of x.

X+ C!
sm
xc

Now

Also

cos
x+c

Thus we have

sm x sm c

; 1 for every value of x and c.

. xc^lx c

(From Elementary Trigonometry)

cos
x+ c xc

XC
Hence

|

sin x sin c I <e when
|
x c

|
< e.
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Thus, there exists an interval (c e, c+e) around c such that for

every value of x in this interval

|

sin x sin c
|

<s.

Hence, sin x is continuous for xc and, therefore, also for

every value of x
; c being any number.

4. S7z0w f/?tff sm* x is continuous for every value ofx.

Let e be any given positive number.

We have

\f(x)-f(c) |

=
|

sin2x-sin2c
|

=
|
sin (x+c) | |

sin (x c) |

< |

sin (x c) |

x-c .

when

1

x-c
I
<e.

Hence, sin2 x is continuous for x=c and, therefore, also for

every value of x
;
c being any number.

5. Show that the function f(x), as defined below, is discontinuous

atx^.
x, when

[x, when

The argument will be better grasped by considering the graph*
of this function.

The graph consists of the point P (, 1) and the lines OA, AC:

excluding the point A. Our intuition y * p , r

immediately suggests that there is a dis- *
* ^ *

continuity at A
;
there being a gap in the

graph at A.

Also, analytically, we can see that

for every value of x, round about x=,
/(x) differs from /() which is equal to 1,

by a number greater than so that there
B C X.

is no question of making the difference Fi ^
between /(x) and/ () less than any posi-
tive number arbitrarily assigned.

Therefore /(x) is discontinuous at x=:
3-2. Limit. The important concept of the limit of a function

will now be introduced.

For the continuity of/(x) for x= c, the values of the function

for values of x near c lie near/(c). In general, the two things, v/z. ;

(i) The value /(c) of the function for x= c, and

(ii) the values of/(x) for values of x near c,
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are, independent. It may, in fact, sometimes happen that the values

of the function for values of x near c lie near a number / which is not

equal to f(c) or that the values do not lie near any number at all.

Thus, for example, we have seen in Ex. 5, above, that the values of

the function for values of x near lie near which is different from
the value, 1, of the function for x=. In fact this inequality itself

was the cause of discontinuity of this function for x= J,

The above remarks lead us to introduce the notion of limit as

follows :

Def. Mm f(x;=l.
x -> c

A function f(x) is said to tend to a limit, I, as x tends to c, if, cor-

responding to any positive number e, arbitrarily assigned, there exists

a positive number, 8, such that for every value of x in the interval

(c S, c+S), other than c,f(x) differs from I numerically by a number
which is less than e, i.e.,

\A*)-l\ -<e,
for every value ofx t other than c, such that

\

xc
\
<8.

Right handed and left handed limits.

lim /(*)=/. lim /(*)=/
x->(c+0) x->(c-0)

A function f(x) is said to tend to a limit, I, as x tends to, c, from

above, if, corresponding to any positive number, e, arbitrarily assigned,
there exists a positive number, 8, such that

I/W-M <*
whenever

c<x<c+8.
In this case, we write

lim fix)= 1,

and say that, / is the right handed limit of f(x).
A function f(x) is said to tend to a limit, I, as x tends to c from

below, if corresponding to any positive number, e, arbitrarily assigned,
their exists a positive number, S, such that

whenever

c8<x<c.
In this case, we write

lim /(*)=/
x -> (c-0)

and say that, /, is the left handed limit of/(x).

From above it at once follows that

lim *)= /,
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jf, and only if,

Jim /fx)=/= lim f(x)

It is important to remember that a limit may not always exist.

(Refer. Ex. 3, p. 46)

Remarks 1. In order that a function may tend to a limit it is necessary
and sufficient that corresponding to any positive number, e, a choice of 8 is

possible. The function will not either approach a limit or at any rate will not
have the limit /, if for some e, a corresponding 8 does not exist.

2. The question of the limit of f(x) as x approaches 'c* does not take
any note of the value of /(or) for x^c. The function may not even be defined for
x=c.

3-21. Another form of the definition of continuity. Comparing
the definitions of continuity and limit as given in 3*1, 3*2, we see

that

f(x; is continuous for x=c if, and only if,

lim f(x)=f(c).
X ->C

Thus the limit of a continuous function f(x) y
as x tends to c, is

equal to the value f(c) of the function for x=c.
>

We see that a function /(x) can fail to be continuous for X = c
in any one of the following three ways :

(/) f(x) is not defined for x=c
;

(11) f(x) does not tend to a limit as x tends to r, i.e.,

lim f(x) does not exist.

x ->c

(Hi) Hm f(x) exists and/(c) is defined but

lim f(x) ^f(c).

Examples

1. Examine the limit of the function

<w x tends to 1 .

The function is defined for every value of x

x2 1

y= _ =*+!, when x^l.

Case 1. Firstly consider the behaviour of the values of y for
values of x greater than L

Clearly, the variable y is greater than 2 when x is greater
than 1.
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If x, while remaining greater than 1, takes up values whose-
difference from 1 constantly diminishes, then y, while remaining
greater than 2, takes up values whose difference from 2 constantly
diminishes also.

In fact, difference between y and 2 can be made as small as we-
like by taking x sufficiently near 1.

For instance, consider the number "001.

Then

if x<l-001.

Thus, for every value of x which is greater than 1 and less thai*

1*001, the absolute value of the difference between y and 2 is less than*

the number -001 which we had arbitrarily selected.

Instead of the particular number -001, we now consider any
positive number e.

Then

if

x<l + e.

Thus, there exists an interval (/, 1 -f e), such that the value ofy,
for any value ofx in this interval, differs from 2 numerically, by a
number which is smaller than the positive number e, selected arbitra-

rily.

Thus the limit of y as x approaches I through values greater than

/, is 2 and we have

lim =2.

Case II. We now consider the behaviour of the values of y for
values of x less than 1.

When x is less than 1, }> is less than 2.

If, x, while remaining less than 1, takes up values whose
difference from 1 constantly diminishes, then y, while remaining less

than 2, takes up values whose difference from 2 constantly diminishes

also.

Let, now, e be any arbitrarily assigned positive number, however
small.

We then have

| y-2 | =2->>=2-(x+l)=l-x< e,

if 1 <x,
so that for every value of x less than 1 but >1 s, the absolute

value of the difference between y and 2 is less than the number e.
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Thus there exists an interval (I s, 1) such that the value of y,

Jor any x in the interval, differs from 2 numerically by a number which

is smaller than the arbitrarily selected positive number e.

Thus the limit ofy, as x approaches 1, through values less than

1, is 2 and we write

lim y=2.
jc~(i-0)

Case HI. Combining the conclusions arrived at in the last two

cases, we see that corresponding to any arbitrarily assigned positive
number e, there exists an interval (1 e, 14**) around 1, such that

for every value of x in this interval, other than 1, y differs from 2

numerically by a number which is less than e, i.e., we have

| y-2 |
< e

or any x, other than 1, such that

|x-l|<e.
Thus

lim y=2, or, y -> 2 as x -> 1.

x->l

2. Examine the limit of the function

y=x sin x,

as x approaches 0.

Case I. Let x > 0, so that y is also > 0, if we suppose

X < 7T/2.

For 0<x<7T/2, we have

sin r<x,
BO that

x sin x<x2
, if 0<x<7r/2.

Let e be any arbitrarily assigned positive number.

For values of x which are positive and less than y'e, we have

X2 <e

so that for such values of x, we have

x sin x<e.

Thus there exists an interval (0, Ve
)
such that for every value

of x in this interval the numerical value of the difference between

x sin x and is less than the arbitrarily assigned positive number

e, so that we have a situation similar to that in case I of the Ex. 1

above. Thus

lira x sin x=0.

Case II. Let x<0 so that ^>0, if we suppose x> Tr/2.

The values of the function for two values of a which are equal

in magnitude but opposite in signs are equal. Hence, as in case I,
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we easily see that for any value of x in the interval
( \/e, 0)

the numerical value of the difference between x sin x and
is^ less

than e.

Hence lim x sin x=0.
x -> (0-0)

Case HI. Combining the conclusions arrived at in the last two
cases, we see that corresponding to any positive number e arbitrarily

assigned, there exists an interval ( \/s, \/e) around 0, such that

for any x belonging to this interval, the numerical value of the
difference between x sin x and is <e,

i.e., |
x sin x-~Q

\
<e.

Hence lira x sin x=0.
x->0

Note. It will be seen that the inequality |

x sin x
|
< e is

satisfied even for x=0. But it should be carefully noted that no
difference would arise as to the conclusion

lim xsin x=0,

even if x=0 were an exception.

Again, we see that for #=0, the value of the function is

sin 0=0
which is also its limit as x approaches 0. Thus in this case, the limit

of the function is the same as its value. Thus this function is conti-

nuous for x=0.

The function (x
2

l)/(jtl), as considered in Ex. 1, possesses
a limit as x approaches 1

, but does not have any value for x=l, go

that it is discontinuous for x= l.

3. Examine the limit ofsin (1/jc) as x approaches 0.

Let

so that y is a function defined for every value of x, other than

The graph of this function will enable the student to understand
the argument better.

To draw the graph, we note the following points :

(/) As x increases monotonically from 2/7T to oo, 1/x decreases
from 7T/2 to and therefore sin (I/*) decreases monotonically from
1 toO ;

(//')
as x increases monotonically from 2/3-7T, to 2/7T, Ifx de-

greases monotonically from 3?r/2 to Tr/2 and therefore sin 1/x increases

monotonically from 1 to 1
;

(i/i) as x increases from 2/5?r to 2/37T, l-/jc decreases monotoni-

cally from 5?r/2 to 3?r/2 and therefore sin l]x decreases from I to

-i;
and so on.
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Thus the positive values of jc can be divided in an infinite-

number of intervals

rj- -Li
LlT' 5;: J'

2 n r
j!_

* J' I*'

[-

L57T> 3lTj'

such that the function decreases from 1 to in the first interval on
the right and then oscillates from 1 to 1 and from 1 to 1

alternatively in the others beginning from the second interval on
the right.

It may similarly be seen that the negative values of x also

divide themselves in an infinite set of intervals.

A _ _? 1
37T' 57TJ

such that the function decreases from to 1 in the first interval

on the left and then oscillates from 1 to 1 and from 1 to 1

alternately in the others beginning from the second interval on the^

left.

Hence, we have the graph (Fig. 37) as drawn.

The function oscillates between 1 and 1 more and more

rapidly as x approaches nearer and nearer zero from either side. If

we take any interval enclosing x=0, however small it may be then

for an infinite number of points of this interval the function assumes

the values 1 and ] .

Fig. 37.

There can, therefore, exist no number which differs from the

function by a number less than an arbitrarily assigned positive number
for values of x near 0.

Hence

lira (sin 1/x) does not exist.

x ->0

This example illustrates an important fact that a limit may not

always exist.

Note. The function considered above is not continuous for

jc=0. Neither is the function defined for x=0 nor does its limit

exist when x tends to zero.
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4. Examine the limit of

x sin
x

as x approaches 0.

Obviously the function is not defined for x=0. Now, for non-
zero values of x

*rini- = ]*|
sin~L]<|*|

so that

x sin
j\

xsm
x

when

Thus, we see that if, e, be any positive number, then there

exists an interval ( e, s) around 0, such that for every value of x in

vthis interval, with the sole exception of 0, x sin (I/*) differs from

Jt>y a number less than e.

Hence

In fact, as may be easily seen, the graph of

. 1

y=x sin
x

oscillates between

y=x and>>= x

as x tends to zero.

This function is not continuous for x=0.
3*22. Infinite limits and variables tending to infinity. Meanings

of

(i) lim/(x)=oo (//) lim f(x)= oo ;

Def. A function f(x) is said to tend to oo
,

as x tends to c, if,

corresponding to any positive number G, however large, there exists a

positive number 8 such thatfor all values ofx 9 other than c
9 lying in the

interval [c-8, c+S],

/(*) > G.

Also, a function f(x) is said to tend to oo
,
as x tends to c, if,

Corresponding to any positive number G, however large, there exists a

positive number S such thatfor all values of x in [c8, c+8] exclud-

ing c,

AX) < -G.

Right handed and left handed limits can be defined as in 3*2,

p. 42.

We shall now consider some examples.
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Examples
I. Show that

lim ( 5- ]=OQ .

^cA*2 '

The function is not defined for x=0. We write y=l/x2
.

Case I. Lef ;t>0. If x, while continuing to remain positive,
diminishses, then 1/x

2 increases.

Also, 1/x* can be made as large as we like, if only we take x

sufficiently near and greater than it.

Consider any positive number, however large, say 106
.

Then

l/x
2>106

,
if X<1/10*,

so that for all positive values of x<l/103
, we have

Instead of the particular number 106 we may consider any
positive number G.

Then

Thus, there exists an interval [0, lj\/G] t such that for every
value of x belonging to it, y is greater than the arbitrarily assigned

positive number G. Hence

lim l*2 = oo.

Case II. Let x<0. Here also y is positive. If, x while conti-

nuing the remain negative, increases towards zero, then 1/x
2 also

increases.

Also if, G be any* arbitrarily assigned positive number, then,
for every value of x in the interval ( l/y^* 0)> we have

so that 1/x
2 tends to oo as x tends to through values less than it

and we write in smybols
lim (l/JC

2
)
= oo.

a->(0-0)

Case III. Combining the conclusions arrived at in the last two
cases we see that corresponding to any arbitrarily assigned posi-
tive number G, there exists an interval [ II\/G, lj\/G], around 0,

such that for every value of x (other than 0) belonging to this inter-

val, we have

Thus

lim lx*z=oo ,
or (l/;c*)-*oo as
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2. Show that

,.
1 1.1lim =POO , lim = 00,

lim -- cfoes wo/ exist.

The function is not defined for x=0. We write y=I/x.
Case I. Let x>0 so that j is positive. If x, while continuing

to remain positive, diminishes, then Ijx increases.

Also, if G be any positive number taken arbitrarily, then

l/x>G, if x<l/G.
Hence

lim (l/x)= oo whenx->(0+0).

^

Case II. Let #<0 so that y=ljx is negative. If x, while con-

tinuing to remain negative, increases towards zero, then y=ljx
decreases and numerically increases.

Also, if G be any positive number taken arbitrarily, then

l/x<-G, if x>-l/G.
Hence

lim (l/x)= oo when x->(0 0).

Case III. Clearly when x->0, lim (1/x) does not exist.

3-23. We will now give a number of definitions whose mean-
ings the reader may easily follow.

(i) A function f(x) is said to tend to a limit /, as x tends to oo

(or QO
), if, corresponding to any arbitrarily assigned positive number

e, there exists a positive number G, such that

!/(*)-/ |
<>

'

for every value ofx>G, (x< G).

Symbolically, we write

lim /(*)= / when x->oo , [lim/(x)=/ when x-> oo ].

(11) Afunction f(x) is said to tend to oo
, as x tends to oo (or oo )

i/, corresponding to any positive number G, however large, there exists

a positive number A such that

Symbolically, w
re write

lim/(x)=oo when x~oo , [lim/(x)=<x> when x-> oo )]

The reader may now similarly define

lim/(x)= oo when x-*oo
;
lim/(*)= oo when x-* oo

Note 1. Instead of oo, we may write +00 to avoid confusion with oo .

Note 2. Rigorous, solution of any .problem on limits requires that the
problem should be examined strictly according to the definitions given above in

terms, of e'$, g'j, G's etc. Bat in practice this proves very difficult except in some
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very elementary cases. We may not, therefore, always insist on a rigorous
solution of such probelms.

Exercises

1. Show that the following limits exist and have the values as given :

(0 lim (2*+3)=5. (//) lim (3*-4)=2.

(///) lim (**+3)=4. (iv) lim
a?->l o;~>3

(v) lim (l/aO=i (vO lim

2. Show that

(0 5x+4 is continuous for z=2.

(11) za+2 is continuous for *=3.

Also show that two functions are continuous for every value of x.

3. Examine the continuity for oj=0, of the following functions :

(0

. 6, when #=3,

(,7) /()=/ sin ~,

j^
0, whena?=0,

4. Prove that cos x is continuous for every value of x.

5. Show that cos2 x and 2+x+x* are continuous for every value of x.

6. Draw the graph of the function V(x) which is equal to when x

to 1 when 0<a;^l and to 2 when s>l ; and show that it has two points of

discontinuity.

7. Investigate the points of continuity and discontinuity of the following
function :

f(x)=(x*la)-a for x<a, /(a)=0,/(aO=a-(aV#), for

8. Show that

/(z)=cos when x^O and/(0)=l.

is discontinuous for g=0.

9. Show that

lim tan a?=oo
, lim tan a?= oo

but lim tan x does not exist.

[Refer 2-63, p. 27]

10. Show that

lim logx= oo.

*->(<HO)

[Refer 2-5, p. 25].

11. Examine

lim 5^
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[If x tends toO through positive values, then I/* tends to ooand, therefore,
21 /* tends i ooo.

If x tends to through negative values, then I/* tends to oo and there-

fore, 2l/a> tents toO.

Thus

-JL, JL_
lim 2*~=oo, lim 2*=

s-KO+0)
but

lim 2*

does not exist.]

12. Show that

lim

13. Show that if

where [a?] denotes the greatest integer not greater than rr, then

lim /(aO=0, lim /(*)= !,, lim f(x) does not exist.

*-Hi -0) a?->(l +0) <c->J

What is the value of the function for x=\ ? [Refer Fig. 11, p. 17]

14. Explain giving suitable examples, the distinction between the value of
the function for a?=a and the limit of the same as x tends to #.

15. Give an example of a function which has a definite value at the origin
but is, nevertheless, discountinuous there.

3*3. Theorems on limits.

Let/(x) and <p(x) be two functions of x such that

lim /(*)= /, lim ?(x)=w.

Then

(0 lim
a?-0 x >a x-*a

i.e., the limit of the sum of two functions is equal to the sum of their

limits ;

(ii) lim [f(x) ?(x)]=lim /(x)lim y>(.x)
= / m,

i.e., the limit of the difference of two functions is equal to the difference

of their limits ;

(Hi) lim [f(x)-9(x)]=limf(x) . lim *'(*)
= /m,

x >a x~>a x-*a

i.e., ih* limit of the product of two functions is equal to the product of
their limits

;

(iv) lim

i.e., ^Ae limit of the quotient of two functions is equal to the quotient of
their limits provided the limit of the divisor is not zero.
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These results are of fundamental importance but their formal

proofs are beyond the scope of this book.

These results can easily be extended to the case of any finite

number of functions.

Note. Inversion of operations. A beginner who notices the above state-

ments for the first time may fail to see any meaning in them and he may not be
able to appreciate the significance of the same. In order, therefore, to help
him dp so, some observations seem to be necessary here.

In mathematics we deal with different types of operations and some-
times the mathematical expressions are subjected to two or more operations
and in such a case the order in which the operations are made must be taken
into account. It cannot just be assumed that the order can be changed at will

without altering the final outcome, i.e., the final result may not be independent
of the order of the operations.

The fact is that in each case the question as to whether the inversion of
the order of operations is or is not valid has to be separately examined in

relation to the nature of the operations.

We now examine the following statements :

(i) logOnfn) ;*logw4-log n.

(it) sin (A + B) ^sia A+ sin B.

(Hi) ax(b+c) =0x6 + axc,
In (/) we find that the two operations involved, viz., that of addition

and taking of log arc not invertible.

Similar is the case in (//) where we have the operations of adding and
taking of sine.

In (//'/), however, we see that the two operations of addition and multi-

plication are invertible.

The theorems in this article amount to asserting the validity of the in-

version of the operations of taking the limits with each of the four operations of
addition, subtraction, multiplication and division.

The reader is advised to think of other similar cases also.

3-4. Continuity of the sum, difference, product and quotient of

two continuous functions.

Let /(;c), <p(x) be any two functions which are continuous for

x=0, so that

lim/(x)= ^(a), lim 9(x)=?(0).
x -> a x -> a

Prom the theorems in 3*3, we see that

lim
x -> a.

=value of [/(*) +?(*)], for *=0
so that/(x)+9(.x) is continuous at x= (t.

The continuity of/(x) y(x) and f(x)<p(x) may similarly be

proved.
For the quotient, we have

lim /M-?^M , *here lim'
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JM ^value oft&. for x-a,
?(a) ?(*)'

so that/(x)-r?(x) is also continuous at x=fl, provided

lim <p(x)=<p(a)^iQ, when x -> a.

Thus, f&e sum, the difference, the product and the quotient of two

continuous functions are also continuous (with one obvious exception
in the case of a quotient).

3*41. Continuity of elementary functions.

We have seen in Ex. 3, p. 40 and Ex. 4, p. 51, that sin x and
GOB x are continuous for all values of x.

Hence from 3*4, above, we see that

sin x . cos x 1 1
tan x=- , cot x=--- , sec x=- ,

cosec x=--------
cos x sm x cos x '

sin x

are also continuous for all those values of x for which they are defined ;

points of discontinuity of these four functions arise when the denomi-

nators cos X
9
sin x become zero and for such values of x, these func-

tions themselves cease to be defined.

Also it may be easily seen that, x, and a constant are continu-

ous functions of x. Thus by repeated applications of the results of

3/4 above, we see that every polynomial

is a continuous function for every value of x and that every rational

function

<*Qx+al
x-l+...+an

is a continuous function of x for every value of x except those for

which the denominator becomes zero.

Finally the functions, sin-1 x, cos-1 x, tan""1 x, cot-1
x, sec-1

x,

cosec-1 x, loga x, a? are, continuous for all those values of x for which

they are defined. This is geometrically obvious from the graphs
drawn in Chap. II. Analytical proofs are beyond the scope of this

book.

3*5. Some important properties of continuous functions.

3-51. Letf(x) be continuous for x=c and f(c)^0. Then there

exists an interval [c S, c+S] around c such that /(x) has the sign of

f(c)for all values ofx in this interval.

Its truth is obvious if we remember that a continuous function

does not undergo sudden changes so that if /(x) is positive for any
value c of x and also continuous thereat, it cannot suddenly become

negative and must, therefore, remain positive for values of x in a

certain neighbourhood of c.
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In informal, precise manner, it may be proved as follows
;

To every positive number s, however small it may be, there

correspond a positive number S such that

for every value of x such that

c

Letf(c)>Q. In this case we take e any positive number less

than/(c) so that/(c)-~ e and/(c)+e both are positive, Thus, /(*) lies
between two positive numbers and is, therefore, itself positive when
x lies between c8 and c+S.

Ltf(c)<0. Hence /(c)e is already negative and /(c) +s will
be negative if e< /(c). Thus in this case if we take e any positive
number which is smaller than the positive number /(c), then we see
that /(x) lies between the two negative numbers /(c) e and/(c)+s
and is, therefore, itself negative when x lies in the

*

interval

[C-8, C+8]. :-
_

~
: ;

Hence the theorem.

Note. This simple but important property of continuous functions will
be used in the chapters on Maxima, Minima and Points of inflexion.

3*52. Let f(x) be continuous in a closed interval [a, b] and let

/(a), f(b) have opposite signs ^ Thenf(x) is zero for at least one value of
*> lying between a and b.

Its truth is intuitively obvious, for, a continuous curve y=f(x)
going from a point on one side of x-axis to. a point lying on the other
cannot do so without crossing it.

Its formal, analytical proof is, however, beyond the scope of
this book.

3-53. Letf(x) be continuous in a closed interval [a, b]. Then
there exists points c and d in the interval [a, b], where f(x) assumes its

greatest and least values M andm, i.e.,

The proof is beyond the scope of this book.

. _ .The.theorem states that there is a value of a continuous func-
tion greater than every other of its values and as also a value smaller
than every other value.

A discontinuous function may not possess -greatest or least values
as we now illustrate.

Consider the function defined as follows-:

I x,~fbr 0<;

\,~- ibrJfc=X
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(0'i)C

u .
point C(0 > *>' and the line AB excu -

the point 5. The function possesses no greatest value; 1 not being
a value of the function. If we consider

any^ value less than 1, however near 1
;

it may be seen that there is a value
of the function greater than that value.

This is explained by the fact that

the function is not continuous in the

interval (0, 1) ; #=0 being a point of

Fig. 38. discontinuity.

Note. This property will be required to prove Rolle's Theorem in Chap.

Example

Show that

when, n is any integer.

We cannot write

,. jc*~ a* r ,. / x Ahm ------ = yr-S
---~> for hm(x a)=0.

In the present case the limit of the numerator is also zero.

Case I. Firstly suppose that n is a positive integer. By actual

division,

x a

the equality being valid for every value of x other than a. As the

limit does not depend upon the value for x=a, we can write

- lim ~
x-*a x

Being a polynomial, the function

x ~~ a x -> a

is continuous for every value of x and, as such, its limit when x -> a
must be equal to its value for x~a. Thus

lim
x
-^-=a*-i+an-*a+ ...... +d-i=na*-*

x ->a x~a

Case II. Now suppose that n is a negative integer, say m,
where m is a positive integer. We have
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xm-am 1

x a amx m
'

,. x* a* ,. xm am ,. 1
lira--= lim- hm -

employing Case I and the fact that l/a
mxm is continuous for x=a.

In the Case II, we must suppose that

Exercises

1. Show that

2. If

^-2 and/(-2)*t

find A so that/(x) may be continuous for *= 2.

3. Show that

lim sin(*-f /t)=sin x.

/t~>0

3*6. Some important and useful limits.

3*61. Limiting value of x" when n tends to infinity through posi
live integral values ;

x being any given real number.

(i) Let x>\.

We write x= 1 +h so that h is positive.

By the Binomial theorem, we have

where each term is positive.

Hence

x=(l+h)
n >l+nh.

As (\-\-nh) tends to infinity with n, therefore xn also tends to

infinity.

To be more rigorous, we consider any pre-assigned positive number G.

Then

If A be any^positive integer greater than (G l)/t, then

xn>G for H> A so that x*-*oo when w~>oo .
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(ii) Let x~l. Here x*= l for all values of n and therefore

in this case.

(m) Let 0<x<l. Here, also, x" is positive.

We write x=l/(l +h) so that A is a positive number.

As before

<z _____^
1+nh'

Now ll(l+nh)-*Q as n tends to infinity. Therefore x"-*Q as

oo.

To be more rigorous, we consider any positive number t. Then

, if

If m be any integer which is > f-- 1
J[A,

then

;c*<c for ri^m*

Thus we see that xw , which is always positive, lies between e and e

n^m so that for 0<jc<l
lim xw when >co .

(iv) Let x=0. Here ^=0 for all n so that x->0.

(v) Le/ l<x<0. Here x is negative so that x* is positive
for even values of n and negative for odd values. We write .*= a
so that a is a positive number less than 1.

Absolute value of xn
is an

, i.e.,

|
x"

|
=an

.

But a*->0. Hence

(vi) Let x= 1. Since xn is alternately 1 and 1, therefore it

neither tends to any finite limit nor to Jt in this case.

{vii) Let x< /. Here, again, xn
is alternatively negative and

positive. But in this case it takes values numerically greater than

any assigned number. Hence xn does not tend to a limit.

Thus, we see that lim x*, when n -> oo, exists finitely if, and only

if,

Abo 9 ttisOif-l<x<I 9 i.e., if\x\ <1 and is Iforx^l.

3'6i. Limiting value of xnjn !, when n tends to infinity through

positive integral values and x is any given real number.

Let x be positive and let m> m+l be the two consecutive

integers between..which x lies ao that we haye . , ., . [
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We write
s

= ^L ^L -JL
* *

nl 1*2 '

IT'
' '

"m
'

m+ 1
'

^n+2'
' '

'7T*

Let p=^.JL ..12 m
so that /? is a positive constant.

Also, each of -^~, ^. , is <- ^
m+2 m+3 '

n
~ ' "

x* f x \*~
m

p / x

8ay

where A: is a positive constant independent of n.

Since, x/(w+ l) is positive and <1, therefore when

m being a constant.

Hence

xn
lim -^^=^0, when w-^oo .

!

'

Again, let x be any negative numbed, say a, so that a is posi-
tive. We have

x*

n Ij n

Y
Now, since

j-->0,
we see that also-0.

*x
Hence - lim -y*=n

whatever value x may have.

Here, of course, n tends to infinity through positive integral
values only.

3 63. Limiting value of

,

when n tends to infinity through positive integral values.
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Step 1. By the Binomial Theorem for a positive integral index,
we have

The expression on the right is a sum of (n +1) positive terms.

Changing n to fl+ 1, we get

__L_Vi- A_^ fi
n \

(w-i-1 A n+i )
......

V n+l J

Here, the right-hand side consists of the sum of (+2) positive

terms. Also

i_l_<i__2_ !_!
' <

n+ l'
1

n

so that each term in the expansion of

i 41

is greater than the corresponding term in the expansion of

C'+r)'-

Thus, we conclude that

l / 1 \*

K'+T)
for all positive integral values of w, i.e., (l + l/M)"

1
increases monotoni-

cally as n increases.

Step II. We have
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<l+l+-2-+ 2"+...+2.2.2...(-!) factors

= 1 + -g. <3) foralln. ...(//)
t 2

/ 1 N*
Thus we see that f 1 -j

--
J steadily increases as /i takes up

successively the series of positive integral values 1, 2, 3, etc., and re-

mains less than 3 for all values of n.

(1 \
n

H-----
J approaches a finite limit as n -> oo .

Note 1, From (i) and (11), we see that

for every value of n so that the limit is some number which lies between 2 and 3.

The mere existence of the limit of (1 -f l/w)*has beea shown here and at
this stage nothing more can be said about the actual value of the limit which is

denoted by e, except that it lies between 2 and 3.

The reader will be enabled to appreciate the argument better and also

begin to feel a little more acquainted with, e, if he calculates the value of

( 1+

for various successive positive integral values of n.

<?-,

tfj-2, a2=2 25, a3-2-37, a4-2 441,

In Chapter IX it will be shown how the value of e, correct to any number
of places, can be determined without much inconvenience.

Note 2. The proof for the existence of the limit has been based on an
intuitively obvious fact that a monotonically increasing function which remains less

than a fixed number tends to a limit. The formal proof of this fact is beyond the
scope of this book.

Cor. I. Lim (1 4-l/x)*=e, when x tends to infinity taking all the

real numbers as its values.

If x be any positive real number, then there exists a positive
integer n such that

JL JL
x >

n+i'

or i.j__^],4_ -L>i_|__J_,x ' n+1
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or
/ 1 \

O+T)
(In case the base is greater than 1, raising a greater number to a greater

power, does not alter the.direction Qf.itie inequality.) __

We thus have

Let x ~> oo . Then n and (w+1) -> 00 through positive integral
values. We know that

lim H-| J
= lr=:lim M+ ""Xf J

/ 1 x* /I \n4
*1

lim
(l-| J

=^= lim (l+^~TTj

Therefore

Urn
x-+<

COT. 2. lim l-.
-C^-ccV

Let x= y so that >>-> + oo as x -4- oo . We have

= lim fl-f --j-Y

a

lim (l+~-
- ^y-V ooV

T
^-

Cor. 3. lim (l+z)
l 'Z
=e when z -> 0.

Let z=l/x so that jc -+ or according as z -> through

positive or negative values.

Now

lim (1+z) a=s lim [1+ ) s=f

z->(0+0) *->

and

lim (1+2) lim f 1+ ~) =^.
z -> (0-0)
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Cor. 4. Hl+ *.y'*-Iim
x -+0\

^ a) X ^.Q

Note, tn higher Mathematics the number V is taken as the base of

logarithms which are then called Natural logarithms. The base e is generally
not mentioned so that log x means loge x.

3-64. To show that

a*_ i
lim ------ =log, a.

x

Let a?l=y so that y -> as x ->().

We have

or

x log a=log (1 +>>), i.e., =x log (l+>0/loga.

Hence

a* 1 y

1

-.
,

--..

y
&v

'logo

,
1

=loga. -;--- _ lus M .
---------

j
,

log (1+7) log (1+7)
Iy

.. a*-\ '. r. 1 1
... hm --= hm logo -----T7

X ^Q x
y ^Q]_ /:K J

a . Hm

lim log (1+7)
-^0

3-65. To
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Let x=a(l+y) BO that y -> 0, as x - a.

...
*X -<*X = a

X
[(1+JO

X -1] = fl

x~ 1

Again, we put

(1-BOX l=z so that z -+ 0, as y -> 0.

=i +2 or

-l)

_ (X-D _z _ log (1+z)- a '

Fog (1+z)
'

~~~y

(X-D
> z_ .a *

log (1+zj

'

log (1+z)

Hence

.. -
.. ,.Urn - =?va hm -------------- ,, hm

->0 x~a z-*0 log
'

3*66. lim --------- =1, as proved in books on Elementary Trigono-
-^0 x

metry.

Examples

1. Show that

l lX when

is continuous for x=0.

Now

lim/(x)=lim f
#->0 a?->OL

aothat lim f[x)=*
->0

Hence the result.
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2. Show that

i

/(x)=(e*--l)/(e* +1) whenx^Q,

/(0)=0

if discontinuous at x=0.

When x tends to through positive values, then

i

therefore e* - + oo. Thus

_
.. tT - 1

^

. .

When x tends to through negative values, then l/JC-> <x>

JL

And therefore e * ->0. Thus

hm

Hence we see that

lim f(x)^ lim f(x)

eo that Hm f(x)

does not exist.

Hence the result.

3. Show that -
continuous for x=l.

Now, as may easily be seen

_ _

lim ^;r-1 =B oo, lim e*"1 =0.
a?->(l 0)
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Thus

lim /(x)=0, Km /(x)-0,
*-Hl+0) *->(!- 0)

lim x=0=

Hence the result.

4. A sum ofP rupees is given on interest at the rate of r% per
annum. What mil be the amount after t years, when the interest is

being continuously added ?

Supposing that the interest is added after every nth part of a

year, the amount after t years will be

r \tn

The required amount is its limit as n-> c.

We have
"

fr/100

which -> Pe as n --*> oo and is thus the required amoun ^

Exercises

1. Prove that

sin ax a .. .
taf^ *

1 COS
(j/i) lim --

l
- -

2. Examine whether or not the following functions are continuous
0,

:r when a; i^O.(

I
1, when rc=0.

C
sin 2r when #-0,

(iO
A*)-}"

"5
^ 1 when a;=0.

tan 2* wbencc^O.

|> when a; 0.

whena;=0.
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e2
, when #=0.

( -I/*
2

*)=)
e

C 1, when #=0.

f e- 1 /*

(v/0 /(*)= <( 1+~^T~'
whcn x^ -

U, when #= ().

f I/a'

( vi/0 /()--( "777
whens^O.

l e 11* -1
L 1, when #=0.

3. Show that

sin (a?-|-/0 sin a?

lim -
------=cos .

A-->0

Carefully state the results you employ.

4. Show that

and (//) (

when w->oo through positive integral values.

5. Draw the graphs of the functions

3-7. Note on Hyperbolic Functions. In analogy with Trigono-
metric functions, the Hyperbolic functions are defined in the following
manner :

QX ._ p X
03? _ I g -^

sinh x=
^ 5

cosh x==
2 ;

. . sinh x e^ e-^ . cosh x
tanh X=s =- ; C0th X= =

12 2
sech x= = 5 cosech x= -- ass~

3-71. Graph of sinh x.

The following properties of sinh x will enable us to draw the

graphs:

(i) sinh x is continuous for every value of #.

V>__gO'
(tf) sinh 0=- =0.,
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-_-L
ex -er* e*

2
~

2

and as x increases from 0, e* monotonically increases and

monotonically decreases. Thus as x
increases from 0, sinh x monotonically
increases.

(iv) lim (sinh x)=oo .

x->oo

(v) sinh (-*)=
e~*- e*

-a .. = sinh x.

Thus we have the graph as

shown, in general outlines. (Fig. 39).

Fig. 39

3'72. Graph of cosh x.

(/) cosh x is continuous for every value of x.

(ii) cosh 0=

(iii) cosh x=

and as seen above
(e

x e-x)l2 monotonically
increases, as x increases from 0. Thus cosh x
monotonically increases as x increases
from 0.

(iv) lim cosh x= oo.

X->co

(v) cosh ( x)=cosh x.

Hence the graph as shown.

3*73. Graph of tanh x.

(i) tanh x is continuous for every value of x, the denominator
not vanishing for anv value of x.

() tanh 0=0.

(tit) tanh x
e*+e~*

=1-
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BO that tanh x increases as x increases from onward.

69

vi

(iv) lim tanh x = lim

y^tanh x

Fig. 41

e*-fi-
lim

\-e~**

1+ee*+e~*

(v) tanh ( x) = tanhx.

We may note that

j
tanh x

for every value of x.

Note. The graphs of coth x, sech x and cosech x have not been given.
The reader may, ifhe so desires, draw the same himself.

3-74. Some fundamental relations. The following fundamental
relations can be at once deduced from the definitions :

cosh2x sinh2x = 1 .

=sech2x.

=cosech2x.

icosh 2x.

=sinh 2x.

3*8. Inverse hyperbolic functions. In this section we obtain the

logarithmic expressions for the inverse Hyperbolic Functions :

sinh-1
x, cosh-1 X9 tanh-1

x, coth-1
x, sech""1 x, cosech""1 x,

which are defined as the inverses of the corresponding hyperbolic
functions. This will also necessitate a slight modification of the de-

finitions so as to make them single-valued.

A. Let

<y=sinh""
1
x,

so that y is the number whose sinh is x.

r a)

< (2)

(3)

I (*)

1 tanh2x

coth2x-l
cosh2

x+sinh2x

2 sinh x cosh x

or j
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It is easy to see that x+ V(*2+ 1) is positive and x <\/(x*+l)
is negative for every value of x, positive or negative. Also we know
that the logarithm of a negative number has no meaning in the
field of real numbers so that [x <\/(*

2+ 1)] has to be rejected. Hence
we have

B. Let

We will see that there are always two values of y whose cosh is
a given number.

Now

x=cosh y= J (<# -f-<r") i.e., e2*-2,x.^+l=0.

*=xi/(x* l) or >>=log [x v^C*
1

!)]

Here we see that both jt+ v/(*
2
-l), and x-Vf*2- 1

)
are

,
-

positive and real when x>l so that in this case y has two values.

For x>l, we have

and

BO that

log [*4V(*2
--1)]>0, and log [x-

To avoid this ambiguity, it is usual to modify the definition of
cosh"" x a little and say that cosh-1 x is the positive number y whose
cosh is x so that we have

cosh-1 x=log [x+ vXx* 1)].

Note. The ambiguity referred to here is a consequence of the fact that
in xcosh y two values of .y give rise to the same value pf x so that to a given
value of x correspond two values of y which gave rise to it. (Refer 3*72).

C. Let

7=tanh~1
x, where

|
x

\

.-. x=

Thus

lx== ___
fog

A "T"A
.

It is easy to see that

^0, if I x
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We may similarly show that

D.
eoth-ix=^- log

X
^] |

x
^f A ~

M.

[<*+!)/(*- 1)]>0, if
| jc| >1.

E. sech-*x=log
1+ ^fl-Tlg

2

)-. [0<x< 1].
'

F.
x

where the sign of the radical is positive or negative according as x is

positive or negative.

Ex. 1. Show that sinh* tends to oo or oo according as x tends to
oo or oo .

2. Show that cosh x tends to oo whether x tends to oo or to oo.

3. Show that tanh x -> 1 or -> 1 according as x tends to oo or
,lo oo .

4. Show that

sinh (;c+^)==sinh x cosh .y+cosh x sinh y
cosh (x-f v)=cosh x cosh y i sinh x sinh y.



CHAPTER IV

DIFFERENTIATION

4-1. Introduction. Rate of Change. The subject of Differen-

tial Calculus which had its origin mainly in the geometrical pro-
blem of the determination of a tangent at a point of curve, has
rendered possible the precise formulation of a large, number of physi-
cal concepts such as Velocity at a point, Acceleration at a point,
Curvature at a point, Density at a point, Specific heat at any tem-

perature, etc. each of which appears as a Local or instantaneous Rate
of change as against the Average Rate of Change which pertains
to a finite interval of space or time and not to an instant of time
and space.

The fundamental idea of Local or instantaneous Rate of Change
pervading all these concepts underlies the analytical definition of

differential co-efficient.

4-11. Derivability. Derivative. We consider a function f(x)
defined in any interval (a, b). Let c be any number of this interval

o that /(c) is the corresponding value of the function. We take

c+h any other number of this interval which lies to the right or left

of c (i.e., c+/*> or <c) according as h is positive or negative. The
value of the function corresponding to it is f(c -{-/?).

Now, h, is the change in the independent variable x, and

is the corresponding change in the dependent variable /(c).

The expression [f(c+h)f(c)]jh 9
which is the ratio of these two

changes, is a function of h and is not defined for A=0 ;
c being a fixed

number.

It is possible that the ratio tends to a limit as h tends to 0.

This limit, if it exists, is called the derivative of f(x) for x==c and
the function, then, is said to be derivable for this value.

Def. f(x) is said to be derivable at xc if

/r->0 ^,

exists and the limit is called the Derivative or Differential co-efficient of
the function f(x) for x=c.

The limit must be the same whether h tends to zero thcpugh

positive or through negative values. The function will not b&'deri-

vable if these limits are different.

The function /(x) is said to be finitely derivable if its derivative

isftflffe.

72
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Ex. 1. Show that x2 is derivable forx=l and obtain its derivative

for *=7.

Let

/(jc)=x
2 so that/(l)= l 2=l.

To find the derivative for x=l, we change x from 1 to 1-f-ft &
that the function changes from 1 to

Change in the functional +h)*-l=2h+h2
.

which approaches 2 as h approaches 0.

Hence /(x) is derivable and its derivative is 2 for x 1.

Ex. 2. Show that
\

x
\

is not derivable for x=0.

Let

f(x)= \

x
\ s>othat/(0)=0.

It will be shown that the limit of [/(04-/J) f(0)]//J does not

exist, when h tends to 0.

Now

f(0+h)-f(0) f(h)

h
-=-

/r
=lor-l

according as h is positive or negative.

Hence, [f(Q+h) f(0)]/h -~> 1 as h -> through positive values
and -> 1 as h -> through negative values.

Thus [f(0+h)f(0)]/h approaches different limits when h
approaches through positive or negative values so that it does not
tend to a limit as h tends to 0.

*

Hence
|
x

\
is not derivable for x=0.

Ex. 3. If f(x)=xsin

show thatf(x) is continuous for x=0 but has no differential co-efficient

for x=0.

We have

=x sin --0=xsin -
.X X
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-
|
x

| |
Bin *-

|
< |

*

Thus if e be any pre-assigned number, we have

!/(*)-/(0) !
<e when

[
x-0

| <e.

Hence

lim /(x)=0x-0
so that f(x) is continuous for x=0.

Again

== 8n
jc x x

and, as seen in Ex. 3, p. 47 >
lim sin (I/*) does not exist when x -> 0.

Thus/(x) has no differential co-efficient for JC=0.

Ex. 4. Find the derivatives of

(/) 2x8
-f3x-4 for .v=5/2. (11) 1/jc for x-5.

4*12. Derived function. In 4-11, Ave have defined the

derivative of a function /(x) for a particular value, c, of the indepen-
dent variable. Instead of considering a particular number c, we, now,
consider any number x and determine

- . , Alim >/v
~

;

yv ; when h ->
n

where x is kept constant in the process of taking the limit. We
suppose here that the limit exists whatever value x may have provi-
ded it belongs to the interval of definition of the function.

\

^his
limit which is a function of x is called the Derived function

of Derivative off(x) and is denoted by/'(jc).

Derivative of function is also called its Differential co-effi-

cient.

The symbol /'(c) then denotes the derivative off(x) for x=*c.

Examples

1. Find the derivative of x2
.

Let

/(*)=**.

/'<*)-lim&^^ when h ->
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_ ]ira (
X
^^I^ when h ->

ft

= lim (

Thus 2x is the derivative or the derived function of x2
.

Puting xa=l, we get

which is the derivative of .x
2 for x=l and agrees with the result of

Ex. 1, 4-11, p. 73.

2. Find the differential co-efficient of \/x.

Let

f(x)=\(m

^ --r
,
when X

'

We start afresh to find derivative at x=0. We have

when'/* -> through positive values ; <\Jh being not defined for nega-

tive values of h.

Ex. Find the
derivations

of

(i/y 1/^Jx. (///) x8
. </v) ax*+bx+c.

4-13. Another notation for the Derivative. In this notation the

changes in the variables x and y are denoted by the composite sym-

bols Sx and Sy respectively, so that

The derivative t.e. 9 lim (Sj>/Sx), as 8x ~+ 0, is then denoted by

another composite symbol dyjdx.

Thus

< . lim = when 3x ^ 0.

dx ox

Again, the value f'(c) of the derivative of y=f(x) for any parti-

cular value, c, of x is denoted by
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Note 1. dyldx is a composite symbol denoting lim SylSx and is not to be

regarded as the quotient of dy by dx which have not so far been defined as sepa-
rate symbols.

Note 2. The changes gx and Sy in x, y are also known as increments.

*-Ex. 1. Find
(-! ) x=Q

and
*f-

when y =-,
Ex. 2. If .K=M(x*-i-l), find (dy/dfc) when *=-l-

4-14. An important theorem. Every finitely derivable function

ts continuous.

Let/(x) be derivable for x=c so that the expression

[f(c+h)-f(c)]lh

tends to a finite limit as h tends to 0. We write

lim

lim J^L^'J^J- x iim (" A--0

lim fa+h)=f(c), i.e., lim /(x)=
x ~> c

Hence

Therefore /(x) is continuous at x=c.

Cor. Iff(x) is derivable for every point of its interval of defi-

nition, then it is continuous in that interval.

Note. The converse of this theorem is not necessarily true i.e., a function may
be continuous for a value of x without being derivable for that value. For

example, the function

y- 1*1

is continuous but not derivable for x=0. [Ex. 2, 3 page 73)

Ex. 1. Show that the function
|
x

|
+

|
x 1

|
is continuous for every value

of x but is not derivable for x=0 and xl.
Ex. 2. Construct a function which is continuous for every value of x but

is not derivable for three values ofx.

Ex. 3. Show that/(x)=x* sin (1/x) when x-^0, and/(0)-0, is continuous

and derivable for x=0.

[For mor examples and exercises refer to the appendix to this chapter.)
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4*15. Geometrical interpretation of a Derivative. To show that

/'(c), t.e. 9

is the tangent of the angle which the tangent line to the curve y=f(x)
at the point P[c,f(c)] makes with x-axis.

We take two points P\c, f(c)] and Q[(c+h), f(c+h)] on the

curve yf(x).
Draw the ordinates PL, QM and

draw PN JL MQ. We have yi

and

T

NQ
L M

Fig. 42.

Here, _XRQ is the angle which the chord PQ of the curve
makes with the A'-axis.

As h approaches 0, the point Q moving along the curve
approaches the point P, the chord PQ approaches the tangent line
TP as its limiting position, and ^ XRQ approaches /. XTP which we
denote by $.

On taking limits, the equation (1) gives

tan</r=f'(c).

Thus f'(c) is the slope of the tangent to the curve y=f(x) at

P[cJ(c)}.
Cor. The equation of the tangent at any point P[c, f(c)] of the

curve y =/(*) is

y-f(c)=:f'(c)(x-c).
Note. The student should note that it is not necessary for every curve to

have a tangent line at every paint thereof. The existence of the tangent demands
the existence of the derivative and we have seen in Ex. 2, and 3, 3 4'11, p. 73
that every function is not derivable for every value of jc.

For example, we know that
]
x

|

is not derivable at JC=0. The
curve y= |

x
|
Cannot therefore possess tangent at (0, 0).

This fact may be seen directly from the graph Fig. 8, p. 16 also.

Ex. 1. Find the slope of the tangent to the parabola y=x2 at thS

point (2, 4).

Derivative of x* is 2x and its value for x=2 is 4. Hence the

required slope of the tangent is 4.

Ex. 2 Show that the tangent to the hyperbola y^ljx at (1, 1) makes an
angle 3*r/4 with x-axis.
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Ex. 3. Find the equations of the tangents to the parabola y=x* at the

points (-1, 1) and (2, 4).

4*16* Expressions for velocity and acceleration of a particle

moving in a straight line. Every thinking person is aware of

the concepts of Velocity and Acceleration of a moving point. The

difficulty arises in assigning precise measures to them. In practice,

velocity at any instant is calculated by measuring the distance

travelled in some short interval of time subsequent to the instant

under consideration. Ihis manner of calculating the velocity cannot

clearly be precise, for different measuring agents may employ different

intervals for the purpose. In fact this is only an approximate value

of the actual velocity and some approximate value is all that we need

in practice. The smaller the interval, the better is the approximation
to the actual velocity.

In books not employing the method of Differential Calculus,,

velocity at any instant is defined as the distance travelled in an

infinitesimal interval subsequent to the instant. Now there exists

no such thing as an infinitesimal interval of time. We can take

intervals of time as small as we like and in fact interval with dura-

tion smaller than any other is conceivable. The definition as it stands

is thus meaningless. A meaning can, however, be attached to the

above definition by supposing tluat the words 'velocity' and 'infinitesi-

mal' in it really stand for approximation to the velocity' and 'some

short interval of time', respectively.

The precise meaning to the velocity of a moving particle at any
instant can only be given by employing the notion of Derivative.

4-161. Expression for velocity. The motion of a particle

along a straight line is analytically represented by a functional

equation

where, 5, represents the distance of the particle measured from some

fixed point O on the line at time /.

Let P be the position of the particle at any given time /. Let,

again, Q be its position after some short interval 8t, and let PQ=8s.

The ratio 8s/S/ is the average velocity over this interval and

is an approximation to the actual velocity at P. We know intuitively

that better approximations will be obtained by considering smaller

values of 8t .

We are thus led to define the measure of the velocity at P as-

J>eing equal to

f . 8s . ds
lim T , i.e., fr6t dt

Hence, if v denotes the velocity, we have
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4*162. Expression for acceleration. Let v be the velocity at

any given time t, and lot v-\-Sv be the velocity after some short

interval of time St : 8v is the change in velocity during time 8t.

The ratio SvjSt is the average acceleration during this interval

8t and is an approximation to the actual acceleration at time t. The
smaller values of St will correspond to better approximations for the

acceleration at time t . We are thus led to define the measure of
acceleration as

7
. Bv . dv

Jim --, i.e., f
.

/ dt

Ex. 1. Find the velocity and acceleration (/') at the end of 3 seconds,
(//) initially, in each of the following cases :

(a) j=i*-f2f+3. (b) s= \l(t -{-!). (c) 5=

Ex, 2. A particle moves along a straight line such that V is a quadratic'
function of/ ; prove that its acceleration remains constant.

Ex. 3. Ff ,y-/ 3 -2/ a
-h3f-4, give the position, velocity and acceleration of

the particle at the end of 0, 1, 2 seconds.

4-2. The remaining part of this chapter is devoted to determin-

ing the derivatives of functions. Home general theorems on differen-

tiation which are required for the purpose will- also be obtained"

in 4*3. To provide for illustrations of these general theorems,

we obtain, in this section, derivative of xa where a is any real'

number.

4-21. Derivative of constant.

Let

V=r,

where, c, is a constant.

To every value of x corresponds the same value of y, so that the-

increment Sv, corresponding to any increment Sx, is zero.

*y ..? -o
8x 8.x

dy .. By ... dc _

Note. Looking at derivative as the rate of change, this result appears-
almost intuitive, as the rate of change of anything which does not change i

necessarily zero.

The result may also be geometrically inferred from the fact that the sloper

cf the tangent at any point of the curve y=c, which is a straight line parallel to*

x-axis, is 0.

4-22, Derivative of xa where a is any real constant number.

Let
"*
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Let 8y be the increment in y corresponding to the increment 8x
in x.

y+8y=(x+8x)* ,

Sx
"

8x (x+8x)-x
'

= lim

( 3-65, p. 63)

Hence

d(x
a
) ^ ,V- =a x 1,dx *

where a is any real number, rational or irrational.

Another method. The derivative of xa for rational values of a

can also be obtained without employing the general limit theorem of

3-65,

Case I. Let a be any positive rational number, say, p\q*

Here

We write

Then

z+8z=(x+8x)
l lq

or (z+Sz^^x+Sx.

8y =
8x

Let 8x -> so that Sz also -> 0.
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oc-1= ax

Case II. Let a be any negative rational number, say p\q ; p, q
being both positive. We have

Sv fYJL&v-\~~PlQ v~*Pl4oy (x-^-bx) x
8x

~~
Sx

*

Writing z=x llq and z+Sz=(x+Sx)
1

^, we obtain

Sx
-

Let Sx -> so that Sz -> also. As before, w get

dy 1 ^1
Jx

""
z*.zp

^ p' '

a-2^"-
1

Ex.1. (/)

()

9

1

dx

ar

4*3. Some general theorems on differentiation.

4-31. Derivative of the sum or

able functions of x.

Denoting their sum by y, we write

4-31. Derivative of the sum or difference. Let w, v be two
derivable functions of x.

...(i)

Let Sw, Sv, 8y be the respective increments in u, v, y, corres-

ponding to an increment Sx in x so that x, u, v, y become x-\-8x,

u-\-8u, r+Sv, y+Sy respectively. We have

y+Sy^U+Sll+V+Sv. ...(//)

Subtracting (i) from (H), and dividing by Sx we get

JSj^
SM Sv

Sx
==s

"SjT"^"8jc
'
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Let Sx -> 0.

8y ,. /Sw 8u\ ,. Sw
, v Sv

to
=lim

(to+to)-
1" 1^ +lim

S* >

dy du dv
r dx^dx + ta-

We may similarly prove that

d(u v) du dv

dx
~

dx dx
"

Generalisation. By a repeated application of the results

obtained above, it can be proved that if u
l}

t/
2 , ,

un be buyfinite

number of derivable functions and

then

dy du duz du3 dun
dx
=

~dx ~dx ~dx dx
'

We thus have the theorem : Algebraic sum of any finite number of
derivable functions is itself derivable and the derivative of the sum is

equal to the sum of their derivatives.

Ex.1.

_ 1 , 1 _
1 I 3 3 '

dx dx

2_
= 1 4. /_ i \x-i- 1_ __

-TV ' xz

Ex. 2. Find the derivatives of

(0 i*. (io
J-i (l-/o

>|X """"
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4-32. Derivative of a product.

Let

y~uv
where u, v f are two derivable functions of x.

Let Sw, 8v, 8y, be the increments in u, v, y respectively corres-

ponding to the increment 8x in x. We have

8y=u.8v+v.8u+8u.8v,
or

8y 8v Sw 8v

Let 8x -> 0. Then 8u also *
;
for w, which is a derivable

function, is continuous.

-limf W .

L

*V
: + v. f H-to. when S* -,

fix
' Sx

'

8

,. / Sv \
, ,.

/ Su \ ,
,.

.
..

=hm(
.

ljc )+hm( v.---)+hm3w.l,m

dv dv du

.. =
dx . dx

Thus we have the theorem : The product of two derivable

functions is itself derivable and its derivative is the sum of the twa

products obtained by multiplying each function with derivative of the

other.

The derivative of the product of two functions= first functionx
derivative of the second -f second function x derivative of the first.

The result (i) may also be re-written as

.-
,

y dx u dx ^ v dx
'

Note. It may be noted that the operations of differentiation and multi-

plication are not invertible.

d(u v)__ , du dv
l 'e" "dx "^ dx dx'

'

Cor. 1. Generalisation. Directive ofthe product of any finite

number of derivable functions.

We first take
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dy f
(

du,
HiUn * "

du

On dividing by y=ul
u
2u^ we obtain

I dy 1 du l
1 duz 1 du

z

~if dx^U! dx u% dx * u3 dx
*

By repeated application of this result, we obtain

l^ dy 1 dki 1 du^t i J_ ^^

,-a 27 -r~ , where y==w1t/2w3 ...t/n = TT wr .

Cor. 2. Derivative of cu, where c is a constant and u any deri-

vable function of x. Let

dy du dc

'3x~~ dx dx

du . t/w

Hence

d(cu) du

v ;
t/x dx

2. Find the derivatives of

(0 (x+2)(3+x). (//) (x-l-2)
a
(2x:-3).

4-33. Derivative of a quotient.

Let

J>=n/v,

w, v are two derivable functions of x such that v is not zero

for the value of x under consideration.
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V.SM--M.8V

T(v+Sv)"'

By
Sx
~

v(v +Sv)

Now, v, being a derivable function of x, is continuous

Hence

Sv -> as Sx -> 0.

Thus

*du dv

<.:*d(
,

dx
"~~

dx
=

v2

so that derivative of the quotient of two functions

= [Derivate of Numer. (Denomr.)

(Numer.) (Derivative of Denomr
.)] Square of Denominator.

Ex.

,/ x \
, ^ dx

d( i
--

--) (1+^) 7
-

... \ l +x / ax

dx

(lJrx).lx.l

-[--i]L 1+X*J

2. Obtain the derivatives of

n\ '

, ft:\

^x -f~5 v-* r *) x* "f x s

Note 1. Being a derivable function, v is continuous. Also, we have

supposed tf at v=o Tor the value of x under consideration. There is, therefore,
an interval around x such that v^O for any point of the interval. (3*51, p. 54.)



86 DIFFERENTIAL CALCULUS

Thus if we suppose x+ Sx to lie wittvn this interval then, the correspon-
ding value of v, /.<?., v-j-gv^O. This fact justifies division by v+gv in step (/)

Note 2. The importance of the results obtained above in 4 3 lies in
the fact that the derivative of any function which is an algebraic combination
[/.*., built up through the operations, of addition subtraction, multiplication md
division of several others is itself expressible as an algebraic combination of the
derivatives of the latter.

4 34. Derivative of a function of a function. // y=f(u) and
11=

<l>(x), soy is a function of x,"*then

dy dy du

dx
^

du
*

dx
'

i4r

'and<t> being derivable functions ofu and x respectively.

Let Sx be any increment in x and Su the corresponding incre-
ment in u as determined from u= (f>(x). Again, corresponding to the
increment Su, in u

9 let 8y be the increment in y as determined from
y=f(u). We write

Sy Sy Su

8x~~~ 8u Sx

Let Sx ~> so that Su -> 0.

n ( Sy \ lirv, / Sy Su
. nm i _ -

^
\ nm

f
. -rL, .

Sx -> \ Sx J sx -> o ^ Su '

Sx

_ lim 8>L
a

lim 8u
.

6// -> Sw 5x > S-^

Hence

jdy dy du

dx
~~

du
'

dx

The result is capable of immediate generalization. Thus if

be three derivable functions so that >> is a function of x, we have

dy dy du dv

dx
~

du
'

dv
'

dx

Ex. Find the derivatives of

(i) We write w= l +x2
, j=w2.

du ^ dy i 1
" -

Hence
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or, without introducing u, we have

_
dx

~
</(l+x

2
'

dx

(U) Let u=-~, y=u

du

</x~ (I-*)
2

, -1) __ J2
(1-x)

2
~~(1 x)*

'

Hence

dy dy du 1 /l4-x\
C/A:

~~
du

'

dx
~~

:

or, directly

l+x

Ex. Find the derivatives of

(i) (ax+b)
n

. (

(M{tv)

4-35. Differentiation of inverse functions. Let y=f(x) be any
function derivable in its interval of definition. We suppose that it

admits of an inverse function

as explained in 2*22, p. 21.

We have to find a relation Jbetween/'(x) and f '(y).
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Let 8y be the increment in y corresponding to the increment
8x in x, as determined from y~-f(x). The increment bx in x corres-

ponds to the increment 8y in y as determined from

We have

t>x by
"A

^y
, Sy Sx 8x
1 . -

:
* .

Let 8x - 0.

dx I dy

Thus d[v/rfx and dx/dy are reciprocal to each other.

Ex. Verify the theorem for y=x* when x= 2.

4*36. Differentiation of functions defined by means of a para-
meter. We consider two derivable functions

x=ft) 9 y=9(t) 9

of '*'.

Assuming that x=f(t) admits an inverse .function t=$(x) (2-22)
we obtain

so that y is a function of x.

By the rule for the differentiation of a function of a function

( 4*34), we have

dy dy dt

AIAlso

dx
~

dt
*

dx
'

dt

. _ -

dx*= dt) ~dt~T\t)
'

Note, 'f* is called a parameter.

Ex. 1. Finddyjdx, when x=a/2
, y=

We have
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2. Find dyjdx, whea
... I/' ,.

{ 2t .... 3at
(0 *-flt . ,-6 ,. (ii) *= 8 , 7-

2a/*= .,

44. derivatives of Trigonometrical functions. The symbols
Bx and 8y stand for the increments in x and y and will always be
used in this sense without any frequent mention ^of their meanings.

4 41. Derivative of sin x.

Let

>>=sin x.

8y sin (x+8x) sin _x
8x
~ ""

S^

_2 cos %(2x+8x) sin |8x""
Bx
sin iSx

gy-
.

^ =lim cos (x+^Sx) . lim
S

-^
-

, when Bx -> 0.
UJ\ $ O^t

As cos x is a CDntinuous function, wo have, when Bx -> 0,

lim cos

AT i o r, T sin iSx ,
Also when Sx -> 0, hm - r.

2 = 1.

dy
,--= cos.v.

Thus
d (sin x)v y cos x.

dx

4-42. Derivative of cos x.

Let*

By _cos (,V+SA:)~ cos x
'Bx^ SAT

_ 2 sin |(2x +Sx) sin- -

s^
sin iS= -sin .

$A

As sin A: is a continuous function, \ve have, when Bx ~>
lim sin (x+^Sx) = sin x.

dy ,. . . / , i* v, i-= hm C- sm (
x +iSx)] hm 1-

a?->0

= sin xl sin x.
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Tk * (Cos x)Ihus -> /= smx.

Ex, 1. Find the derivatives of

(/) sin 2x. (ii) cos3 x. (Hi) ^(sin
(i) Let j;

= sin 2x.

We write

w= 2x, so that >>:=sin w.

dy dy du

or briefly

d(sm 2x) d(sm 2x\ d(2x)~~= ~ } - cos 2x 2==2 cos

(ii) Let .y

We write

t/=cos A: so that .y=w3
.

rfy rfv du
)= 3 cos2JC . sin x.

or, briefly

</(cos x)
3

rf(cos x)
3

rf(cos x)~__
dx

~
dx ~d(Qo* x)

*

dx

=3 (cos x)
2 x( sin x)= 3 cos2 x . sin x

(Hi) Let^^V (sin

We write u=<\/x=x^ v=sin u,

so that j= v/v=v2.

dy dy dv du

dx
~~

dv
'

du
*

dx

\v *. cos w . ^ x~~^

COS <\/X 1
""

VC^11 V*)
*

V^*

or, briefly

d\/(sm \/x) d\/(sm \/x) dsin y/x
dx

~
d sin \/x

*

= | (sin v^*)"""" cos V^- I*

JL cos
sss

4
*
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2. Find dy\dx for /=7r/2, when

x=2 cos t cos 2/, y=2 sin f sin 2t.

We have

^=--2 sin /-(-sin 2/)(2)= 2 sin /+2 sin 2/,

-^ =2 cos / (cos 2/)2= 2 cos / 2 cos 2/>

dy dy ,
dx 2(cos / cos 2/)

dx ~~dTj ~dt

z=r

~2(sin / sin 2/)

Putting /= 7T/2, we obtain

91

3. Find the derivatives of

(0 sin
w
x, (//) cos mx, (1/1) sin x

m
, (/>) cos8

(v) --*, (vi) .f
1^ . (v/0 cos

<v//7) sin^x. cos
w
x.

4. Find dy\dx y when

(/) x=a (cos /-f / sin /), y=a (sin r / cos /).

(i/y x= 3 cos r~ 2 cos3 /,r=3 sin / 2 sin3
t.

(///) x-a cos3
/, ^- sin 3

/. (D.U. 1955)

4-43. Derivative of tan x.

Let

>=tan x

^ (x+ Sx) tan x^
Sx

sin (x+Sx) sin x

_ cos (x+Sxj"~cos x

Sx

sin (x+Sx) cos x cos (A: +8x) sin~
Sx cos (x 4 S^j cos x

sin (x-4-S.x x)

8x. cos (x+ox). cos x

1 1 sin

cbs~fx +8x)
*

cos :f
*

Sx
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= J_._L.l=8ec*x
dx cos x cos x

Thus
d
^>=sec* x.
dx

Or, we write

, sin x ,, ,

}>=tan x= so that
cos x

d (sin x) . d (cos x)
, cos x. -, ^ sin x. j

'

dy
[

dx dx
dx~~ cos2lc

cos x. cos x+sin x. sin x
2

1

"cos 2 x

cos

=sec2 x.

4-44. /= cosec2 x.

Its proof is left to the reader.

Ex 1. Find the derivatives of

(i) tan x-f cot x. (/i) sin x. tan 2x. (Ill) x tan x cot 2x.

7 . N tan x cot ;c A A //I tanx\ / ., A //"I
(iv) . (v^ \ J ( i. (v/) A / i i

tanx-t-cotjc V \l + tan x/ y V 1

4-45. Derivative of sec x.

Let

1

>>=sec jc=-
COS X

1

Sy cos_(x+8x) cos x
" ~

cos x cos

"Sx. cos (Jt-f6x). cos x

2 sin | (2x+$x) sin Sx

bx. cos (x+S.x) cos x

1 1 sin i 8x
OX)

COS X COS

1
-=tan x sec x.
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d(sec x) .

Thus ~
, -=tan x sec x.
dx

Or, we write

v= so that
cos x

dy cos x 01 ( sm x) ,

-/-=----s-----/=tan x sec x.
dx cos2 x

A A* dfcosec x) ,

4-46. -^-,-'= cot x cosec x.

Its proof is left to the reader.

Ex. Find the derivatives of

(/) cosec8 3 x. (//) >l[sec (ax+b)].

(Hi) secVfc-f&x). (/v) sec (cosec x).

4*5. Darivatives of inverse trigonometrical functions. The precise
definitions of inverse trigonometrical functions as given in 2*7, p.
30 will have to be kept in mind to obtain their derivatives.

4-51. Derivative of sin""1 x.

Let

^=sin""
1 x so that x=sin y.

dx

4y __1
_

1 1

j^ ^ ,, it

where tha sign of the radical is the same as that of cos y.

By the def. of sin""1 x, we have

7r/2<sin-
1
A:<'7r/2, i.e., 7r/2<><7r/2

so that cos y is positive.

Hence
fi

=
^/(TT^p

4-52. Derivative of cos-1 x.

Let

y^cos- 1 x so that x^=cos y.

dx
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dy 1
,

1
f\f _.__

- - _.
I

.._

where the sign of the radical is .the same as that of sin y. By the
def. of cos""1 x, we have

< cos"1* <TT i.e., < y < TT.

Also if y lies between and TT, then sin y is necessarily positive.

dfcos-1
x) 1

Hence ---,-
/= -

4-53. Derivative of tan-1 x.

Let
"1 x so that x=tan y.

dx 9

or

4.54 d(cot-
1
x)_ J^454

dx
~

1+x*

Its proof is left to the reader.

4-55. Derivative of see"1 x.

Let

y=sec~1 x so that #=sec y.

dx
j =sec v tan v
dy

dy
or

dx sec y tan y

_ , L = , -_
--^- c*f\f* i^ //afvr>2 i 1 \ 1 -^ . //

>

-*>2sec ^V(8e
2

J' 1) xVCx2-
1)

'

We take, +> sign before the radical and write

S"
=x7(^) (Refer note below)

Thus

d(sec~
1
x) 1

dx
'
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Note. This note is intended to show precisely what sign should be
chosen before the radical. Now it is clear that the sign before the radical is

the same as that of tan y. By the definition of sec~T x. [Refer 2*75, p. 33],
we have

When x is positive so that it lies in the interval [1, oo]. then y lies bet-

ween and nj2 and so tan y is positive ;

When x is negative so that it lies in the interval, [ oo, 1], then y lies

between w/2 and n and so tan y is negative.

Thus the sign of the radical is positive or negative according as x is posi-
tive or negative. Hence

:r"= 2 ^ if *> and = --------
,/- 2 ~ir if * <-

dx x^(x*l) jH(x
2
-l)

so that

dy 1
=-: _._ for every admissible value of x.

ctx
i
x

I
*\ [x~ 1 )

dx
-j- = cot y cosec

Thus __ _
dx

~
|x| V(x

2
-!)'

4-56. Derivative of cosec-1 x.

Let

x so that x=cosec y.

or

__
cosec2 yl)~-^ x\7(x

a
-1)

We take, +, sign before the radical and write

"

dfcosec"1
x) 1

Thua
dx"

-

xV(x-iy
Note. The sign before the radical is the same as that of cot y.

By the definition of cosec 1
*, we have

dx cosec y cot y

-1 -1

When x is positive so that it lies in the interval [1, oo], then y lies bet-

ween and nr/2 and so cot y is positive ;

when x is negative so that it lies in the interval [oo , 1], then y lies bet-

ween 7T/2 and and so cot y is negative.
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fckw

Thus the sign of the radical is positive or negative according as x is posi-
tive or negative. Hence we have

and =^br if x<0 >

l- ' for every admissible value of x.

so that we can write

Thus dKcosec^x)^^ ^ 1_

Ex. 1. Find the derivatives of

(i) sin-H*. (//;

(i//) tan-H(l +*)/(! -x)]. (/v) tan-Xcos Vx).

(v; sec x . ^
>t _ / X- Jt!~~l\

(v/iFcos-

,l4x
Ex. 2. Find rfy/d* when

4-61. . Devivative of log,, x. (, x are both positive)

Let

J>=logtf
x.

Now lim ( 1+ )
X
=e. ( 3-63, cor. 3)--^ * ^

Cor. Let a=e so that

^=log^ x=log

-.,_ --
f rrs"^ t iut& c
dx x 6e x
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Thu8 *&*_ JL
dx x

4-62. Derivative of ax .

Let y a*.

* ~x -f ox x &x
-,

by a a x a 1

&x~
=

8x
a *

8x
*

dy _ , ,.
a
8x-l

2~* ii? """&T~

=a* log^a. (3-64, p. 63)

Thus -f-J=a-

Cor. Let a^=e so that ^=6^.

Thus -f- .

dx

Ex. Find the derivatives of :

(/) log sin x. (//) cos (log x). (Ill) *
sln *

(/v) log[sin (log x)]. (v) logV(#
2
-t-;t4-l).

(vi) log tan (Jx -hj"). (vii) log(sec x-ftan x)

0^X -I y.

(V//0 -,-~r' ('*> V( fl
)-log X v \ /

(x) logioCsin"
1^1

). (jci") log[x+ V(jc
f

(xi7) log(e
w*+e-w;r

). (jci//) a** sin1*.

(x/v) eV^7 (jrv) los-
a+ b * x
a b tan x

Derivatives of hyperbolic functions.

4*71. Derivative of sinh x.

Let

e*-e~*

*



98 DIFFBBENTIAL CALCULUS

m, d(sinh x) .Thus
d

===coshx *

4-72. Derivative of cosh x.

Let

.
x=

dy e
x-e-!t

^ ._.__

Thus
d<co

;
h
*)=sinh x.

dx

4-73. Derivative of tanh x.

Let

, , sinh x
>>=tanh x= -,

cosh x

, ^(sinh x) . , d(cosh x)cosh x .
-

-,
-- ~smh x .

- -T - '

t/x Jx
""

cosh2 x

cosh x.cosh xsinh x.sinh x
"

cosh2 x

cosh2 x sinh2 x 1 10_ ---------- _ .^---^^ _- Sech2 x.
cosh2 x cosh2 x

_. d(tanh x) . 9Thus ~
,

/=sech2 x.
dx

A *A d(coth x) , ft

4-74. ^-^-/= cosch2 x.
dx

Its proof is left to the reader.

4*75. Derivative of sech x.

Let

1
v=sech x=~ v- :

cosh x

Q ^ cosh xO l.sinh x
dx

""
cosha x

sinh x
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Thus
d<S h

-*>=-tanhxsechx.
dx

An* d(cosech x) .. ,
4-70. x-_ <= coth x cosech x.

Its proof is left to the reader.

Derivatives of inverse hyperbolic functions.

4-81. Derivative of sinh-1 x.

Let

3^= sinh-1 x so that x=sinh}>.
dx

dy 1 1
or -A:

where the sign of the radical is the same as that of cosh y which we
know, is always positive, ( 3'72, page 68).

^ dfsinh-
1
x) 1

Hence v - -' ...

dx

4-82. Derivative of cosh- 1 x.

Let

j^cosh"""1 x so that x=cosh y.

dx

dy'

^_J_ I 1

//~Y* Gin n v " A /^rr^ftri* t ? 1 i
^ H /i I** 1 \t*^V Ol 1111 X \/ I v/v/Oll V ^^ A J ^^ I *Hs

^^ * I

where the sign of the radical is the same as that of sinh y.

Now, cosh-1 x i.e., y is always positive so that sinh y is positive

(3-71, page 68).

Hence ll00^^^ ^ .

'

4-83. Derivative of tanh-1 x. [ |

x
\ <1] .

Let

j^tanh-1 x so that x=tanh y.

dx
T~-=sech* V,
dy

"

dy 1 1 1
l^l _r_ _ ^.^ - ._ *

dx ~sech2 >~ 1-tanh2
>> ~~l-x*

Thus --=.------ = * ^ .

dx 1 xa

Its proof is left to the reader.
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4*85. Derivative of sech-1 x.

Let

>>=sech~
1 x so that x=sech y.

-j
= sech y . tanh y.

dy 1
or -

dx sech y tanh y
--1 -1

where the sign of the radical is the same as that of tanh y.

But we know that sech-1
x, i.e., y is always positive, so that

tanh y is always positive.

_, dteechr1
x) 1

Hence ._!. ---J _._ .

dx xyXl x
)

4*86. Derivative of cosech- 1 x.

Let

>?=cosech~
1 x so that x=coseoh y.

dx . ,.
T = coseoh y . coth y.

or
cosech y . coth

_ , ____ ________ =, -
,

^cosech y . ^(cosech
2
y~+I) x<\/(x*+l)'

when the sign of the radical is the same as that of coth y.

Now, y, and therefore coth y is positive or negative according
as x is positive or negative.

-
. ifx<0.

TH *2?!*^x) =1rhus
dx

-
)

x
| VO

for all values of x.

Ex. Find the derivatives of

(i) log (cosh x), (//) *
slnh2

*, (///) tan x . tanh x.

4-91. Logarithmic differentiation. In order to differentiate

a function of the form uv ,
where w, V are both variables, it is

necessary to take its logarithm and then differentiate. This process

which is known as logarithmic differentiation is also useful when the
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function to be differentiated is the product of a nuniber of factors.

The following examples illustrate this process.

Ex.1. Differentiate xsin x
.

Let =x* x

log ^= 16g (x
sln x

)=sin x . log x.

Differentiating, we get

1 dy , ,

-

,- =:COS X . log JC+ Sin X.
y dx & x

TT dy sin * / sin x\
Hence ~ = x (cos x . log x -\

-----
y

Ex. 2. Differentiate [x
tan * + (sin x)

cos x
].

We write y=xl*n
*+(sin x)

cos
*.

Let t/=;c
tan

*, .. (1)

and v=(sin x)
cos

*, ...(2)

so that y

dy du dv
* - - _ - -

r
\

-

rfx dx^dx

From (1), we obtain, taking logarithm,

log w=tan x . log ;c.

1 du 21 , x
, =sec2 x . logx+tan x .

u dx

rfw tana; / tanx \ /ov
j.^., rfx^^ ^ec

f x . log x+ -

J-
...(3)

From (2), we obtain, taking logarithm

log v=cos x . log sin x.

1 </v 1

,
--== sin x . log sin jc+cosx. . COBJC

v dx a sin x

dv cos^/
.

*-e.,
dx =(sm x) ^-sin

x . log sin

Adding (3) and (4), we obtain

Ex. 3. Differentiate
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Putting it equal to y, and taking logarithms, we obtain

log }>= logx+| log (l-2x)-f log (2-3*)- J log (3-4x).

Differentiating, we obtain

dy ! 1 2 -2 3 -Z'
_

2 x 3 l-2x~~ 4 2-"3x 5 3-4x

4 9 _ __
+5(3-.4x)

9 16 "I

+ "+
5(3-4x)" J'

-
2JC ^3(l-2;c) 4(2

-

Ex. 4. Find the differential co-efficients of :

(/) (cos x)
log x

. (in

(/vfaanx)
cot x

-f(cotx)
tanA:

, /C *(v) (log ;c)4(sin-
1

A (1 -*)V (2-x)/
.

v ;
(3-j?)

8/4 (4-^4
)
4

'5

(vi/j) sin x . ex . log x . xx .

4*92. Preliminary transformation. In some cases, a preliminary

[transformation of the function to be differentiated facilitates the pfo-
cess of differentiation a good deal, as is illustrated by the following

examples.

Ex. 1. Differentiate

Sin
!+-*

Putting x=tan 6, we have

Yr =Bin-i (sin 2^)=2^=2 tan-1 x.
1 -|-t/an Q

dy _ 2_
*'

~dx -!+*'
Ex. 2. Differentiate

Putting x=cos 0, we have

2 ^' =V'2 cos
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= '2 sin

e .

COS x F

f\ l\

cos _ +sin-rt

l-tan

l+tan-
2
-

7T ^ 7T
J.

4
~

2
=

4 2

1

Ex. 3. F/wJ /A^ differential co- efficient of

tan~l
, *~2 wft/i r^c/ to sin"1 .*

2 (P.C7. 1954, 1956)
JL

- X J.
j

J*

_ 2x
z_ sin-i

2y

Putting x=tan 0, we see that

.
2- -

3 (tan 20)=2^=2 tan-1 x.
1

z=sin-1 2= sin
~1

(sin 26)^20=2 tan~i x.

2

dy^ dy ,dx
dz~dx dz~

Also otherwise, we have

y***>

dy
so that j- ==1.

Ex. 4. // V(!*)+ V(l -y*)=a(x-y), prove that

A (D.U. Hons. 1949
; P.U. 1952)

Putting x=sin 6 and y=ain <f>,
we have

sin +*>(lBm* )=a(sin B sin
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or cos 0+cos ^=0(sin sin
<f>)

2 cos |(04-0) cos \~
2 cos i(0+<) sin~ (V <

or . ^(0~<)= cot-1 a

0^=2 cot"1 a
"**

sin^1 x sin"1 y=2 cot"1 #.

Differentiating, we get

or
<fa

Ex. 5. Find the differential co-efficients of

.(/) tan- 1

j^. (>.t/. 1952) (it) sin~ l

..... . . Vx x .. . . . /\l*vos x\l/2
% (ltt) tan- Ov) tan

y

[Show that this is equal to sin""
1* sin

Ex. 6. Express in their simplest forms the differential co-efficients with
respect to x of

4 93. Differentiation "ab initio". To differentiate "ab initio"

or, from first principles, means that the process of differentiation is

to be performed without making any use of the theorems on the
differentiation of sums, products, functions of functions etc., nor is

any use to be made of the differential co-efficients of standard forms.

We have already had numerous illustrations of it.

Ex. 1. Differentiate sin-*x <ab initio'. (D.U. 1955)

Let ^sssin-
1
,*.

.y+Sy^sin-
1
(x+Sx).

We have x=sin y
and x+&ts= sin (y+ 8>>)

so that Sx=sin (y+8y)~8my.
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Thus

Sx sin (y+Sy^&'my
_ 1 / $8y \

cos (y+ %Sy)
'

Vsin ^ Sy )

Let Sx --> so that 8y also >0.

</x
~"

cos 3;

* ~~~

cos y
~
^(F ~x*y*

Ex. 2. F//irf, /rom first principles, the differential co-efficient of

V ~sin*:~

Let

y~ Vsin x.

\/sin x

=
Sx

'

\/sin

sin (x+Sx) sin x 1

. sin A Sx 1= COS (X+ iSx) TO
' ---- ------

Let Sx-> 0,

^V ,=cos x , 1 .^

^ COS X
~~

Vsinlc

Ex. 3. Find, from first principles, the differential coefficients of :-

<'> sin ^2
- () sin2 x. (i/O Vx. (D.U. 7955)

Exercises

Find, from first principles, the differential coefficients of :

* *(
*8)

- 2. >/(tanx). 3. x
4- tanx8

. 5. sec^x.
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Find the differential co-efficients of :

6X wo -.*. __

T^i 3T . 7.
X*

9. b tan-1

^ tan-1~\

tt * i
** --*

11. tan *

12. tan-*
1+sin-jc

-I .. . 3
14 O-fcOjH^*). (l-4x)~

O . 16. ^ '

8

17. [l-x")"
a
.sin-1^. 18. log [tanh (fcc)].

20- \/(f^H). 21. sin-

22. 10
lo8 sin x

. 23. x log x . log(log x).

/7 L./ f*O^ Y* f<^Q. ^ VMj 1 V f t/ V^^Jo A- / j^ / v^-V/O ^V
. tan-1

-T-J . 25. (sin x)b+ a cos x v y

IJX* / aX &*
26. e . sin (x log x). 27. sin^ 1 f ,

e
, _"~_?_

^29.
sin-1

-;^^-^ .

31.

X. *^ v-v/k t x

33. 9x4 sin (3jc- 7) log (1-5.)

34. e
aj?cos (^ tan-1

x).

cot x coth x. 37. xa
x

sinh *.

35. log [l-**i ^~ w /sin

^ ^^ - , . +)

. Find the differential coefficient of :
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42. Differentiate

(0
'

,.,,00
1

43. Find dyjdx when
. ., sin8/
(i) x =

x 1 1 t ,2x+l
+^Ttan

^3-

cos8
1

-^(cos2/)
'a"-*/6 '

(/f) x=sin H(cos 2/), y=cos /V(cos 20-

(///) x=a(cos /-flog tan i/), .y=a sin /.

44. If x* **<-*, prove that dy/dx^log jc/(l +log x)
a

.

(Differentiate logarithmically)

JI5. Differentiate sin* x with respect to (log x)*.

46. Differentiate x
sm x

with respect to (sin x)*.

47. Differentiate tan-1

[{V(l -hx
2

)-l)}/x] with respect to tan-1 x

(P.U. 7955, 56)

(D.U. 1950)

(P.U. 1959)

(P.U. 1956)

48. Find when x=e

49. Differentiate

with respect to cos-1 x2
.

50. Differentiate (log x)
tan*

(D.U. Hons. 1949)

with regard to sin (m cos- 1
x.)

(P. U". 1955, 56)

51. Differentiate the determinant.

F(x)= /,(*) <fr,(x)

From first principles

we have

F(x+A)-F(x) ;-j /<*)

S

; AW
fi(x+h)-A(x)

*)

f&c+h) (*+*)
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<P,W

Dividing by h and making h tend to zero, we get

<Pi
!

^*

^.

The rule can be easily extended to the case of determinants of any order.

APPENDIX

EXAMPLES

1. Show that

/(x)=x
8 sin (//x) when x^O

/(0)=0

is derivable for every value ofx but the derivative is not continuous for
x=0. (D.U. Hons. 1954)

For xr0, f'(x)=2x sin
coa( ^ )(_

o-=2x sin cos ---

.V X

For x=0, we have

x'sin
1

fw-m^ _!1 * _
x x

=x sin > as x
x

/'(0)=0.

Thus the function possesses a derivative /'(x) for every value of

x and is given by

f'(x)=2x sin cos - when
X X

We have to show that f'(x) is not continuous for x=0. We write

cos =2* sin (2x sin - cos Y ...(1)
X X \ * -* /
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Here

lim ( 2x sin
J=0.y ^Q '

In case

i.e., lim (2xsin
--- cos

)

x-0 ^ x x '

had existed, it would follow from (1) that lim (cos 1/x) would also
;c->0

exist. But this is not the case.

Henca lim /'(*) doas not exist. THUS f'(x) is not continuous
x-0

for x=0.

2. Examine the continuity and derivability in the interval

(
oo , oo

) /or the following function

)
= l in oo<x<0,

n x in O<X<|TT,

-|7r)
2 in JTT<X< oo. (Mysore)

The function /(x) is derivable for every value of x except
parhaps for x*=0 and x = 7T/2. Thus we shall now consider x=0 and
X=7T/2.

Firstly we consider x=0.

Now
lim /(x)= l and lim /(*)= lim (l+sinx)=

-0) x->(0+0)

lim /x=l=:

Hence /(x) is continuous for x=0.

Again, for x<0,

so that

Also for x>0

1+sinx-^.
"""

x
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80 that

lim M
*->(OH-0)

*~
x-KO+0) *

Thus

*
x-KO~0) *

Hence the function is not derivable for x=0.
Now we consider x=irj2.

We have

lim /(x)= lim
W 0) X^(-|7T

lim /(x)= lim

Hence /(jc) is continuous for

Again, for

Putting ^TT x=/ t we see that

1 sin x Isin (JTT /)~" == ""

_ .

t
sm_ 1 cos f _ 2 sin2 \~t _ . sin \ t"""

so that

lim

x |TT

limiii-u

(}n^

exists and is equal to 0,
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Exercises

1. Discuss the existence of/'(x) and/"(x) at the origin for the function

/(x)=x
2 sin - when

x

(B.U. 1953 ; D.U. Hons. 1952)

2. Examine the differentiability of the function

/(x)= xm sin - when x^r.0, w>0x

when x=0
at the point x=0. Determine m when/'(x) is continuous at the origin.

(D.U. Hons. 1952)

origin3. Determine whether /(x) is continuous and has a derivative at the origin
where

4. Show that

is continuous but not derivable for x=0 and x=l.

5. Examine the function

as regards its continuity and the existence of its derivative at the origin.

(D.U. Hons. 1951)

6. Discuss the continuity and the differentiability of the function f(x)

where

o, when x is irrational or zero

W^en JC==
^ ' a fraction in its lowest terms.

(D.U. 1953)

1. Find from first principles the derivative off(x) =~ - when x-^0

and/(0)=0 at a point x=0 and show that the derivative is continuous at x=0.
(B.U. 1953)

8. Show that the function

/(x)=x{l-fisin(logx
9

)} ; for x^0,/(0)=0

is everywhere continuous but has no differential co-efficient at x=0.
(B.U. 1952)

9. If/(*)=* tan-1 when x^O and /(0)=0/show that /(x) is continu-

ous but not derivable for x0.
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10. Is the function

f(x)**(x-a) sin _-- for

continuous and differentiate at x=a ? Give your answer with reasons.

(P. U.)

11. Discuss the continuity off(x) in the neighbourhooi of the origin when
f(x) is defined as follows :

(/) f(x)=*x log sin x for x?*Q, and /(0)=0.

(ii)f(x)=e
11 * when x^O and/(0)=0. (D.U. 1955)

12. A function f(x) is defined as being equal Jo x2
, when ^0, to

5x 4whenO<x^l, to 4xa 3x when l<x<^2 and to 3x+4 when x=2 ;

discuss the continuity off(x) and the existence" of f'(x) for x=0, 1 and 2.

(D.U. Hons. 1957)



CHAPTER V

SUCCESSIVE DIFFERENTIATION

5*1. Notation. The derivative f'(x) of a derivable function

f(x) is itself a function of x. We suppose that it also possesses a

derivative, which we denote by/"(;c) and call the second derivative of

f(x). The third derivative off(x) which is the derivative of f"(x) is

denoted by/"'(jc) and so on.

Thus, the successive derivatives off(x) are represented by the

symbols,

/'(*),/"(*), ........ ,/"(*), ......

where each term is the derivative of the preceding one.

Alternatively, if y =/(*), then dny\dx* also denotes the rtth

derivative of y. Sometimes

are used to denote the successive derivatives of y.

The symbols

denote the value of the nth derivative of y=f(x) for x=fl.

Examples

1, Ifx=a (cos 0+0 sin 0), )>=0 (sin 00 cos 0),find d*yldx*,

We have

-. ~a (sin 0-j-sin 0-J-0 cos Q)=a cos 0,

c/v
-V-- =a (cos cos 0+0 sin 0)=0 0sin 0.

M0

rfy rfy t/(9 _dy \dx

~dx=~d~e 'dt~dijd7
~tan ^

rf*v ^0
v-Y=sec

f -v- [Note this step]

3 a
1 secs fl

^~SeC v - -- "~~
"^~ rsz

a cos d ad

113
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2. Ify=sin (sin x), prove that

Tx +y COS* JC==0 ' (/> * ^ 1953)

We have

dy , . v
=cos (sm x) cos x,

^ = sin (sin x) cos x cos x cos (sin x) sin

= sin (sin x) cos2 x cos (sin x) sin x.

Making substitution, we see that

dy
-j-^+tan x j- +}> cos* #=0.^

3. Change the independent variable to Q in the equation

d2y 2x dy y _

by means of the transformation

x=tan 6. (P. U. 1932)

We have

dy^ _dy dd__ dyjdx _dy I dy

dt ~de dx ~~~de/de '"del
'

do
'

rt . . dd dy , n d*y dO= -2 cos Oane.. +">* ' '

dy= - 2 cos 6 sin cos2 ^T+ cos2 j~ cos2

dv= 2 sin 6 cos3 0. ^r

Substituting the values of x, dy\dx and dl
y\dx* in the given

dififerential equation, we see that it becomes

or 2>in cos8
^--|-cos 0^4-2 sin 0. cos3

^j-|-co8

4

or
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4. Ifax*+2hxy+by*+2gx+2fy+c=Q, show that

d*y

dxz

Solving the given equation as a quadratic in y, we get

x [2(h*-ab)x+2(hf-bg)]

Differentiating again, we get

dy
Substituting for b ,- +h from (1), we get the "required

result.

Exercises

/^/AO V
r. ;>~log (sin x) 9 show that y9

- --
.

- -
.

^3. Show that y=x f tan x satisfies the differential equation

/;

when

If >~[(fl+te)/(c + <fc)] t then

5. If x2 cos /-cos It and ^=2 sin /-sin 2/, find the value otd*y!dx*
=i*.
y\

(f.
If #=a sin 2^ (l-fcos 20), >>=a cos 29 (I -cos 29), prove that

'
If ^-(I/A:)*, show that ^ (1) -0.

'4s %

, \Ifp
1^^1 cos29+6a

sin'fl, prove that
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9. lfy**x log Kaxy-i+fl-1
], prove that

.J*
If *=sin /, y=sin />/, prove that

1 j. Change the independent variable to z in the equation

^-4 cot x
~J~

+ 4>> cosec*x=-0

by m^ans of the transformation

z=log tan i*.

12. If y is a function of x and jc<=l/z, show that

dz*'

. Show that

dx __ 1
. tf^^^

~dy ~dy$x
'

dy*
""

and find the value ofd*xfdy* in terms of 4vA/Jc, d*yldx*> d*y[dx*.

Also show that

dx* dy*

5*2. Calculation of the nth derivative. Some standard results.

5-21. Let y=(

so that in general

jV=w(m
In case, m is a positive integer, yn can be written as

7--
(m w)

60 that, the /wth derivative of (^x+fr)
m

is a constant viz., m \ am
and the (m-fl)th derivative along with the other higher successive;
derivatives are all zero.
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Cor. 1. Putting, m= 1, we get

JV(-lX-2) ......(-n)a"(

_
dx"

~

Cor. 2. Let y=\og(ax+b).
a

yi==a

-

dx* (ax+b)*

5-22. Let

yl
--=mamx log a,

so that, in general

Cor. Putting *e for a, we get I

dx 7*
~~m e '

5-23. Let

jsin (ax+b).

yl
=a cos (ax-\-b)

= a sin (tfx-f 6-f |TT),

J3=a8 cos (ax+b+i7i)=a* sin (ax+6+|7r),
o that, in general

d* sin(ax+b) _ n . r
mr"|

5-24. Similarly

d*cos (ax+b) n r
,

.
,
DTTI

j\ <=aw cos ax+b+ ^~
. dx* L 2 J'

5-25. Let

y=ea* sin (6^:+c).

y^=aeax sin (6jc+c)+ea* 6 cos

*=eax\a sin
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In order to put y in a form which will enable us to make the re-

quired generalisation, we detarmine two constant numbers r and
f such that

a=r cos V, b=r sin ?

r^i/

Hence, we have

yl=re
ax sin

Thus yl
arises from >> on multiplying by the constant r and

increasing the angle by the constant
<f>.

Thus similarly

y2 ==r*e
ax sin

Hence, in general

dw [e
fl* sin (bx-f c)] ,.-1------

^V___r_y
l
==r ea* sm

where

5-26. Similarly

ffi!.fll)].
(
m.+W)4^ cos

(bx+c-fn
tan-^

1.).

5-3. Determination of nth derivative of Algebraic rational func-

tion. Partial Fractions. In order to determine the nth derivative of

any algebraic rational function, we have to decompose it into partial

fractions.

Sometimes it also becomes necessary to apply Demoivre'a

theorem which states that

(cos 0/ sin 0)
n=cos n0i sin n() t

where n is any integer, positive or negative, andi=\/( l).

Examples

1. Find the nth derivative of

Throwing it into partial fractions, we obtain

_ __
(x+2)(2x+3)~ 2 L x+2

"
1

"2x+3j-

dr xa "I
''

. 9

2(2*

8
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2. Find the differential co-efficient of

x

We have

x2+ a2
(jc+ <r/j(x a.

-- f -+ -

J -~~
2 L* a i ^x+ a/

To render the result free from T and express the same in real

form, we determine two numbers r and such that

x=r cos 9, a=r sin 9.

-r-rr?= "ii v 1 .(cos / sin 0)
^

'

n+1 nl v y

and ^-- j= (cos 0-\-i sin

=
^-ii tcos

Hence

x

(-l)
nn! . cos(K-fl)fl

rfx"
~"

where

r=\/(x
2
-f-0

a
), 0=tan-

1
(ajx).

Exercises
+

1. Find the /ith differential co-efficients of

^.^ x+1

2. Find the tenth and the wth differential co-efficients of
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3. Find the nth differential co-efficients of

(//)

X

4. Show that the wth differential co-efficient of

1

is

K-l)w(" !) sin <l+ l

0[sin (n 4- 1)9 -cos (w

+ (sia 0-fcos 0)-*-1]. where fl^

5. Prove that the value of the nth differential co-efficient of
for x=0 is zero, if /i is even* and ( !) if n is odd and greater that 1. (P-U.)

6. Show that the wth derivative of .y^tan- 1 x is

(-l)n-i (w -i) f sin w (Jn-^) sin'1

(iw+^). (P.U. 1935)

7. Find the wth differential co-efficients of

ton-,_.. ....N
.

1 A: 1 Jf cos a

8. If ^=tan-i x, show that

=(n-l) ! cos [n,y +(-!) ] cos"^.

9. If y=jc(x+ 1) log (jc-f I)
3

, prove that

provided that /*

10. If >;=A: log -~, prove that
X~j~ I

5-4. The nth derivative of the product of the powers of sines ai*4

cosines. In order to find out the nib derivative of such a product,
we have to express it as the sum of the sines and cosines of multiples
of the independent variable. Example 1 below, which has been

solved, will illustrate the process.

Ex. . Find the nth differential co-efficients of

(i) cos* x. () #* cos2 x sin x, (/>./. 1951)

i) We know that

1 +cos 2x



SUCCESSIVE DIFFERENTIATION 121

cos* 2x

2x +1(1+008

1+4 cos 2x+J cos 4x

-. cos *+- +4 cos

) cos2* sin x=4(l +cos 2x) sin x

= J sin x+J.2 sin X.cos 2x

==| sin x+J (sin 3x sin x

= J sin x+J sin 3x.

Hence

sn x =
-( sin x)+J~ (e sine sn

sn

sin

2. Find the nih differential co-efficients of

(/) sin 8
Ar. (i/) cos x cos 2x cos 3x.

(//) sin2x cos3 x. (/v) e* sin4x.

(v) e 2ay cos A: sin2 2x.

55. Leibnitz's Theorem. The nth derivative of the "product of

two functions. If w, v be two functions possessing derivatives of the

nth order, then

This theorem will be proved by Mathematical induction.

Step I. By direct differentiation, we have

and (wv),j=w a

t/2
v+ 2C1

t/
1
v1

Thus the theorem is true for n=l, 2,

Step II. We assume that the theorem is true for a particular
value of n, say m, so that we have

mCaww-avJt+ ......

+ ......+ mCmuvm.
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Differentiating both sides, we get

+i v+um Vj+^C, um ^+"0, MW_, va

B, V^rC^C.,) !/_! V2+
U^-OK^ V,+ ...+

OTCW,

But we know that

from which we see that if the theorem is true for any value m of tt,

then it is also true for the next higher value m+ l ofn.

Conclusion. In step I, we have seen that the theorem is true

for==2. Therefore it must be true for /f=ii+ l, i.e., 3 and so for

=3+ l, i.e., 4, and so for every value of n.

Examples

1. Find the nth derivative of x* e
x cos x. (P-U-)

To find the ttth derivative of ;c
2 e

x cos x, we look upon e
x cos x

as the first factor and x2 as the second.

.-. (x
2 e* cos x) n^(e

x cos x)nx*+
nC

l (e* cos x) n.,.2x

-t-"C2(e cos x) w_2 .2

= 2kn .ex cos (x+n tan- J

l).x
a

n~ 1)
e
x cos (x+n-lj.tan-

1
l)2x

" 1
)
.2*

n~ 2
e
x cos (x+^"2 tan-U).2

+2?.nx . cos f x+n^l
-J-)

+w(w-l) cos

2. //

.V=a cos (/og x)+& ^m (fog x),

show that

(D.C7. 1952)
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Differentiating, we get

__ a sin (log x) b
??_C!.

o8^t
Vl
-----

x + x
- -

or xj^1
= a sin (log x)+b cos (log x}.

Differentiating again, we get

a cos (log x) b sin(log x)
xy*+yi=*

----
x
- -

*-

or ^(xya+J'iH 1> cos (log x)+6 sin (log *)];= y

or *2
j>3+*yi+:y=o.

Differentiating n times by Leibnitz's theorem, we obtain

*aJ^2+"Ci-2x^,fi+^
or x'yn

Exercises

1. Find the nth derivative of

(i) jc
n
e*. (//) x3 cos x.

(i/i) 4*
x
[a*x* 2nax+n(n+ l)]. (iv) e" log x

(P.U.1954,56)>

2. If y=x2 sin x, prove that

sn x+-x cos

3. If/(x)=tan x, prove that

[P.J7. 5w/?/>. 7936).

[Write /(x) cos x= sin x and apply Leibnitz theorem.]

4. Differentiate the differential equation

- -
dx* d

times with respect to x. (D.U. 1950)1

5. Find the nth derivative of the differential equation

5*6. Determination of the value of the nth derivative of a func-

tion for x=o. Sometimes it is possible to obtain the value of the nth

derivative of a function for x =0 directly without finding the general

expression for the nth derivative which cannot, in general, be
obtained in a convenient form. Examples 1 and 2 below which have
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been solved will make the procedure cl *ar. As will be seen in Ch. IX,
the values of the derivatives for x=0 are required, to expand a

function by Maclaurin's theorem.

Examples

1. Find the value of the nth derivative of e
m 8in

"1 *
for x0,

Let y=em sin
"
Ax

... (1)

msiiTlx m , ox*- "w=*r - (2)

or (1 x*)y*=nfy*.

Differentiating, we get

(1-x2
) 2y,y8 2xy1 -2ifif^1 .

Dividing by 2yt)
we obtaain

(l-jffo-xyi^m'y. - (3)

Differentiating n times by Leibnitz's theorem, we get

Putting x=0, we get

WO)HHm%B (0).

From (1), (2) and (3), we obtain

XOHl^OHm^COHin".
Putting n=l, 2, 3, 4, etc. in (4), we get

In general

fm2
(2

a+/n2
)(4

2 +/M2
)...[(n-2)

2+m2
], when n is even,^ '~

(w(lHJ2
) (3

2+m3
)...[(n-2)

2+m2
], when n is odd.

(P.U. 1955)

2. If >>= (sin-
1
x)

2
, prove f/wf

(1 x2)^-x^-2:=0 ... (1)x ' ax* dx

Differentiate the above equation n times with respect to x,

Alsofind the value of all the derivatives ofyfor x=0.

(P.U, 1955)

Differentiating y (sin-
1
x)

2
,
we get

2 sin"1 x , 9 .

*=
v (!-*). ,^>
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. . (1
-

x*) y*= (2 sin-1 x)*= 4y.

Differentiating again, we get

2(l-x
2
) ^2-2x^=4^. ...(3)

Dividing by 2yl9
we get

(l-*2
)>>2-*yi-2=0 ...(4)

which is (1).

Differentiating this n times by Leibnitz's theorem, we obtain

(1-^+2+^+1 (-2x)+
n(

~^y(-2)-xyni.l-nyn . 1=0.

or l-*

Putting x=0, we obtain

JWOHa^CO). ,.,(6)

From (2), >>i(0)^0.

From (4), y,(0)= 2. (7)

Putting H=l, 3, 5, 7 successively in (6), we see that

Again, putting w=2, 4, 6 ......in (6), we see that

In general, if n is even, we obtain

>>n(0)
= 2.22 '4 ? .62 .. (~-2)

2
,
when w

Note. The result (5), obtained on dividing (4) by 2y t , is not a legitimate-
conclusion when ^t=0, which is the case when x=0. Thus, it is not valid to

derive any conclusion from (5) and (6) for x=0.

But these results may be obtained by proceeding to the limit as x->0 in-

stead of putting x=0. This may be shown as follows :

We can easily convince ourselves that the derivative of every order ofy
as calculated from (2) will contain some power of (1 x2

) in its denominator
and will therefore be always continuous except for x= 1

, so that lim ^t
and lim ^==^(0), as x-0.

Exercises

1. If u~ tan~ x
x, prove that

and hence determine the values of the derivatives of u when x=0 (M.T, )

2. If

j>=sin (m sin"1
x), show that

(1 -x')*,+,=(2n f IkVn-n+V-'"')*,
and find yn (0). (P.U. /P5>

3. Find yn (0) when j>=*log [x+ 4(\ { x')].
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4. Ity=lx+4(I +**)]", find yn(Q).

5. If

ys~JM COS""1*

*how that

(1 -x^+i-Vn+^xyn^-W+m^y^O
*nd find yn(0). (/)./. Hons. 1953)

6. If^(sinh-1
*)

1
, prove that

then

Hence find at x=0 the value of dnyfdxn . (B.U.1952)

Exercises

1. Show that if

l
- 36^-0

2. If >>n 'denotes the th differential co-efficient of eax sin bx and
n"1

(bja), prove that

. yn=(a sec ^)
n^ aa! sin

Also show that

3. If y=*(ABx) cos ;c+(C4-/>;c) sin AJC, prove that

4. Find the third differential co-efficient of

:5. Prove 'that

6. Show that if =sin wx+cos nx
y then

wr=^[l-f(~lKsin2x]i

when Wr denotes tht rth differential co-elficient of u with respect to x.

(Lucknow)

7. Show that

__ __23 ......
n

(P.U.)

j '
8. Prove that

where P and Q stand for

and nx^-Mi-lXfl 2)jt
f|
-t

4-

respectively.
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9. Find the value of nth derivative of

jx*^x
U2

-4)
a

for x0. ( Trinity College

10. Prove that if ;t=cot 0, (0<0 <n), then

dn fi

^=(-l)
n- 1(-l) ! sin nO sin*0 ;

where n is any positive integer.

11. If

Prove that

IifIn-i+(-l) !

and hence show that

(D.U. Hons. 1949)

Rewriting this relation as

Jn_ In-i , JL
/j ! ~(/i-i) r n

and replacing by , 1, ____ , 3, 2, we get the required result.

12. If y=
d -

n U2
-l)

n
, show that

(x*-l)yn+t+2xyn+l-n(n+ l)^n 0.

Hence show that .y satisfies the Legendre's equation

13. If Un denotes the nth derivative of (Lx-t-M)l(x*2Bx+C)., prove
that

Wn+t+ ?(
-*r*Ji

14. If y=x*ex
, then

z, P./., D.(/., 7955)

15. If

prove that

(D.I/. //ow5., and Pass, 1949 ;

P.U. 1958 Sept.)
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16. If

;' (tan"1
*)*,

then

Deduce that

(Birmingham}

17. If

x=^ tan (log y),

prove that

(1+*)+ (2nX-l)% +(-!) !>=(>. (B.U. }

__ __ _
18. I y

m +y m =2x, prove that

where > w denotes the wth derivative of y. (D.U. Honsit
1947 : P.U. 7959)

19. If y=*e*
x

cos x, show that

>W2(0) -4n>>2n(0) + (2- l)2n^n-2(0) =0.

20. If y=(l+xrf
m

gin (m tan"1
^), show that

^n(0)=Oand^2n+1(0)-(-l) w(m-l)'w~2). . . .(m-2n).

21. If y=sin (m cos"1
Vx) then

that

22. If x4-y==l, prove that

/ (D.U.Hons.l950\M.U.)

23. / By forming in two different ways the nth derivative of*8
", prove

1 +
"!-+ is 723

+
i* . 2273 2

^"f
"Of!?

[Equate the nth derivative of xan with the th derivative of the product
of xn and xn and put x=l].

24. Prove that

sin
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25. If jf=s~.__ prove that

Where 9=tan^

26. Ifw=

show that

(). (7,



CHAPTER VI

GENERAL THEOREMS

MEAN VALUE THEOREMS
Introduction. By now, the student must have leanrt to distinguish

between theorems applicable to a class of functions and those concerning some
particular functions like sin x, log x etc. The theorems applicable to a class of
functions are known as general theorems.

Some general theorems which will play a very important part in the

following chapters will be obtained in this chapter. Of these Rollers theorem is

the most fundamental.

y M &1. Rollers Theorem. // a function f(x) is derivable in an
Merval (a, b], and also f(a) ~f(b), then there exists at least one value

'c' ofx lying within [a, b] such thatf'(c)=Q.

The function f(x) being derivable in the interval [a, b] is con-

tinuous, ( 4*14, p. 76). By virtue of continuity, it has a greatest
value M and a least value in in the interval, (3-53, p. 55) so that

there are two numbers c and d such that

Now either M~w, ... (i)

or M^m. .. .(//)

When the greatest value coincides with the least value as in

case (/), the function reduces to a constant so that the derivative

f'(x) is equal to for every value of x and therefore the theorem is

true in this case.

When M and m are unequal, as in case (//), at least one of them
must be different from the equal values /(a), f(b). Let M /(c) be

different from them. The number 'c' bsing different from a and 6,

lies within the interval [a, b].

The function /(x) which is derivable in the interval [a, b] is, in

particular, derivable for x~c, so that

Hra /(c+/t)-/(c) wh0nA _ | .

exists and is the sani3 when h -> through positive or negative values/

As/(c) is the greatest value of the function, we have

f(c+h)<f(c)

whatever positive or negative value h has.

Thus

...(I,

130
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and
f(c+h)-f(c)

>0for h<0. ..-(2)

Let h -* through positive values. From (1), we get

...(3)

Let h -+ through negative values. From (2), .we get

f'(c) >0. ...(4)

The relations (3) and (4) will both be true if, and only if

/'(c)=0.

The same conclusion would be similarly reached if it is the

Beast value m which differs from /(a) and/(6).

Hence the theorem is proved.

Geometrical Statement of the theorem.

If a curve has a tangent at every point thereof, and the ordinates

of its extremities A, B are equal, then there exists at least one point P
of the curve other than A, B, the tangent at which is parallel to x-axis.

In this geometrical form the theorem is quite self-evident, as

the student may himself realise by drawing some curves satisfying

the conditions of the statement.

B

M "X

Fig. 43. Fig. 44.

This intuitive consideration is also sometimes regarded to be "a

proof of the theorem.

Note 1. It will be seen that the point V where the derivative has been
shown to vanish lies strictly within the interval [a, 6], so that it coincides
neither with a nor with b. In view of this fact, the theorem is generally stated
as follows :

If a function f(x) is such that

\ . It is continuous in the closed interval [a, b],

2.
*

It is derivable in the open interval (a, b),

3. /()=/<.
then, there exists at least one point V of the open interval (a, b), such thatf'(c)~Q
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Note 2. The conclusion of Rolle's theorem may not hold good for a
function which does not satisfy any of its conditions.

To illustrate this remark, we consider
the function >>=/(*)= |

x
\
m the interval

[-1, li-

lt is continuous in [ 1, 1] and /(I),

/( 1) are both equal to 1.

Its derivative/
7

(x) is 1 for 0<z<l and

1, for 1^ x < 0, and does not exist for

jc=0, so that/'(x) nowhere vanishes.

(Ex. 2. p. 73>
~%r The failure is explained by the fact that^

|
x

|
is not derivable in [ 1, 1], in as much as

the derivative does not exist for jc=0, which is

a point of the interval.

Fig. 45.

Ex. 1. Verify Rolle's theorem for

(ii)
' [-3, 0].(i) x2 in [-7, 1].

(0 Let

/(;c)=;c
2 so that /(!)=! =/(~l).

Also, x1
is derivable in [ 1, 1].

The conditions of the theorem being satisfied, the derivative

f'(x) must vanish for at least one value of x lying within [1,1].
Also directly we see that the derivative 2x vanishes for x=O

which value lies within [1, 1]. Hence the .verification.

(ii) Let

We have

/(- 3)=0=
*nd/(x) is derivable in the interval [3, 0]* We have

*

Putting/
x

(A:)=0, we get

This equationJis satisfied by x== 2, 3. Of these two values of
x, for which /'(x) is zero, 2, belongs to the interval [ '3, 0] under
consideration.

Hence the verification.

Ex. 2. Verify Rolle's theorem in the interval [a, b] for the functions

(0 log[(x+*&)/(<i+&)K].

() (x 0)*(x 6)* ; m, n being positive integer*.
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Ex. 3. Verify Rolle's theorem for the functions

(/) sin x/e
x in [0, *] ; (//) ex (sin x-cos x) in [w/4, 5w/4].

Ex. 4. By considering the function (x2) log x, show that the equation
jc log x-2 x is satisfied by at least one value of x lying between 1 and 2.

6*2. Lagrange's mean value theorem. If a function f(x) is deri-

vable in the interval [a, b], then there exists at least one value c
9

ofx
lying within [a, b] such that

f(b)-f(a) _"
b-a

- 1 (C) '

To prove the theorem, we define a new function <p(x) involving

f(x) and designed so as to satisfy the conditions of Rolle's theorem.

Let

V(x)=f(x)+Ax,
where A is a constant to be determined such that

Thus

-~
b-a

Now, /(x) is derivable in [a, b]. Also x is derivable and, A, is a
constant. Therefore, <?(x), is derivable in [a, b] and its derivative is

Thus, <p(x)
t

satisfies all the conditions of Rolle's theorem. There

is, therefore, at least one value 'c' of x, lying within [a, b] such that

f'(c)=0.

Q= <e>(c)=f'(c)+A, i.e., A= -f(c),

JWz> =f,

(c) . ...(0

Another form of the statement of Lagrange's mean value theorem.

If a function f(x) is derivable in an interval [a, a +h], there exists at

least one number '#' lying between and 1 such that

f(a+ h)=f(a)+hf(a+0h).

We write 6 a= h so that h denotes the length of the interval

Ja, b] which may now be written as [a, a+h],
The number, c, which lies between a and a-\-h is greater than

-a by some fraction of A, so that we may write %

where is some number between and 1. Thus the equation (i)

becomes

or f(a-fh)=f(a)+hf'(a+0h).
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Geometrical statement of the theorem. If a curve has a tangent
at each of its points, then there exists at least one point P on the

curve such that the tangent at P is parallel to the chord AB joining its

extremities.

01

Fig. 46. Fig. 47.

We will now see the equivalence of the analytical and geometri-
cal statements.

Iff(x) is derivable in [a, b], then the curve y=f(x) has ar

tangent at each point of the curve lying between the extremities

f(b)-f(a)The slope of the chord AB= -
V -

Lr
. b a

Let Pbe the point (c,f(c)) on the curve
; c, being such that

^>-M=/'(c). ...(01

The slope of the tangent at P~f'(c).

From (i7), we see that the slopes of the tangent at P and thex

chord AB are equal.

Thus there exists a point P on the curve the tangent at which
is parallel to the chord AB.

Note 1. Now [f(b)-f(a)] is the change in the function /(x) as x changes
from a to b so that [f(b)f(a)]l(ab) is the average rate of change of the
function f(x) over the interval [a, b]. Also/'(c) is the actual rate of change of
the function for x=c- Thus the theorem states that the average rate of change of
a function over an interval is also the actual rate of change of the function at
some point of the interval. In particular, for instance, the average velocity
over any interval of time is equal to the actual velocity at some instant belong-
ing to the interval ; velocity being rate of change of distance w.r. to time. This

interpretation of the theorem justifies the name 'Mean Value' for the theorem.

Note 2. If we draw some curves satisfying the conditions of the theorem*
we will realise that the theorem, as stated in the geometrical form, is almost
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Ex.l: //

f(x)=(x-l)(x-2)(x-3) ; a=0, 6=4,

find the value of c. ( D.U. Hons. 1954)

We have

/(6)=/(4)=3.2.1=6,

f(a)=f(Q)= -6,

f(b)-f(a) 12

-7,~a
=

4
~ 6 '

Also

Consider now the equation

i.e., 3=3c2
-12c+ll.

or 3c2-12c+8=0

Taking \/3= 1*732..., we may see that both these values of c'

belong to the interval [0, 4],

Ex. 2. Verify the mean value theorem for

(i) log x in [1, e]. . (//) x3 in [a, 6].

(ii7) lx*+mx+nin [a, b].

Ex. 3. Find 'c' of the mean value theorem, if

/\x)=x(x- l)(x-2) ; a=0, &=*.

(D.U. Hons. 1951)

Ex. 4. Find 'c' so that //

(c)=[/(/))~/(fl)]/(6~a) in the following
cases :

(x-4) ; fl=2, 6=3.

/(*)=*; a-0, 6=1.

Ex. 5. Applying Lagrange's mean value theorem, in turn to the func-

tions log x and ex , deteimine the corresponding values of in terms of a and h.

Deduce Jhat

(0 0<[log (1 +*)]-*-*-'<! ; (//) < 1 log
~e

"]~
- <1.

Ex. 6. Explain the failure of the theorem in the interval [1, 1} when
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6-3. Some important deductions from the mean Value theorem.

Meaning of the sign of Derivative. We consider a function /(x)

derivable in an interval [a, &]. Let xv x
2
be any two points belong-

ing to the interval such that x^>xv Applying the mean value

theorem to the interval [xly xj, we see that there exists a number
between xl and X

2
such that

'

f^-ftoHfv-Xi)*'^ ...

6-31. Letf(x)0 throughout the interval [a, b].

From (/) we get

where x
l9
x2 are any two values of x. Thus we see that every two

values of the function are equal. Hence f(x) is a constant. We
thus prove :

"If the derivative of a function vanishes for all values of x in an

interval, then the function must be a constant.

This is the converse of the theorem, "Derivative of a constant is

zero/'

Cor. If two functions f(x) and F(x) have the same derivative for

every value ofx in [a, b] then they differ only by a constant.

We write

Hence, ^(x), i.e., f(x)F(x) is a constant.

6-32. Letf(x)>0for every value ofx in [a, b].

From (i), we get

for, *!*! and/' () are both positive.

Hence f(x) is an increasing function of x. We have thus

proved :

"A function whose derivative is positive for every value ofx in an

interval is a monotonkally increasing function ofx in that interval."

6-33. Letf'(x) <Qfor every value ofx in [a, b].

From (/), we get

JOT,
X2 Xi is positive and/'() negative.

Hence f(x) is a decreasing function of x. We have thus

proved :

"A function whose derivative is negative for every value of x in an

interval is a monotonically decreasing function of x in that interval."

Note. The above conclusions remain valid even if/'(x) vanishes at the

*n4 points a, * of the interval, for the V of the mean value theorem never
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6'4. Cauchy's mean value theorem. If two functions f(x) and

F(x) are derivable in an interval [a, b] and F'(x)-^Qfor any value ofx
in [a, b], then there exists at least one value 'c' ofx lying within [a, b],
such that

f(b)-f(a) f'(c)

F(a)^ F'(c)

Firstly, we note that [F(b) F(a)]^0 : for if it were 0, then

F(x) would satisfy the conditions of the Rolle's theorem and its deri-

vative would therefore vanish for at least one value of x and the

hypothesis that Fr

(x) is never would be contradicted.

Now, we define a new function <p(x) involving f(x) and F(x)
and designed so as to satisfy the conditions of Rolle's theorem.

Let

where A is a constant to be determined such that

f (* =
Thus

f(a)+ AF(a)=f(b)AF[b).

Now, f(x) and F(x) are derivable in [a, b]. Also A is a constant.

Therefore, <f(x) is derivable in [a, b] and its derivative is

f(x)+AF'(x).

Thus, -f(x) satisfies the conditions of Rolle's theorem. There is,

therefore, at least one value, c, of :c lying within [a, b] such that

f(c)=0.

or f'(c)=-AF'(c),

Dividing by F'(c) which^f-O, we get

_
F'(c) ~F(b)-F(a)

Hence the theorem.

Another form of the statement of Cauchy's mean value theorem.

If two functions f(x) and F(x) are derivable. in an interval [a, a+h] and
F'(x)^0, then there exists at least one number 6 between and 1,
such that

The equivalence of the two statements can be easily seen as in
the case of Lagrange's mean value theorem.



138 DIFFERENTIAL CALCULUS

Note. Taking F(*)=jc, we may easily see that Lagrange's theorem is

only a particular case of Cauchy's.

Ex. 1. Verify the theorem for the functions x* and x* in the interval

[a, b] ; a, b being positive.

Ex. 2. If, in the Cauchy's mean value theorem, we write for/Yx), F(x) ;

(i) **, x ; (ii) sin *, cos x ; (///) ex , e-x ; show that in each case V is the arith-

metic mean between a and b.

Ex. 3. If, in the Cauchy's mean value theorem, we write for f(x), and

F(x), V* and 1/Vx respectively then, c, is the geometric mean between a and b>

and if we write l/x
2 and Ijjc then, c, is the harmonic mean between a and .

6*5. Examples

1.

w monotonically increasing in every interval.

Let

Thus f'(x)>0 for every value of x except 1 where it vanishes.

Hence f(x) is monotonically increasing in every interval.

2. Separate the intervals in which the polynomial

is increasing or decreasing.

Also draw a graph of the function.

Let

so that

for x<2 ;

/'(*)<0for2<x<3 ;

/'(*)>0for x>3 ;

/'(*)= () for x=2 and 3.

is positive in the interval (
oo , 2) and (3,

oo
)
and

negative in the interval (2, 3).

Hence /(x) is monotonically increasing in

the intervals
(

oo , 2] [3, oo) and monotoni-

cally decreasing in the interval [2, 3].

To draw the graph of the function, we
note the following additional points :

Fig. 48.

(iii) /(0)=2,

(iv) /(#)-> < as

(v)

oo
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3. Show that

*/(!+*) < log (1+x) < xfor x > 0.

We write

1

Thus /'(x) > for x > and =0 for x=0.

Hence f(x) is monotonically increasing in the interval [0, QO ].

Also /(0)= 0,

/(*) > /(O) =0 for x > 0.

Hence /(x) is positive for every positive value of x, so that

log (1+*) > x/(l+x) for x > 0.

Again, we write /

BO that F'(jc)==l

Thus, F(x) > for x > 2 and is for #=0.

Therefore F(x) is monotonically increasing in the interval

[0, oo], AlsoF(0)=0.

F(x) > F(0)=0forz > 0.

Hence F(x) is positive for positive values of x, so that

x > log (1+Jt) for x > 0.

Exercises

1. Show that

(i) x/sin x increases steadily from x=0 to x=n/2. (P*U.%

(ii) x/tan x decreases monotonically from x=0 to jc=n/2.

(//i) the equation tan x x=6 has one and only one root in ( Jw, Jn).

(.{/. 7952)

O'v) tan- *>-2 ^ < tan-"
1 x <

2. Show that x~sin x is an increasing function throughout any interval
of values of x. Determine for what values of a y axsin x is a steadily increas-

ing function. (M.J7.)

3. Determine the intervals in which the function

(x
4 + 6jcH 17xa + 32x+ 32)*-*

is increasing or decreasing.

4. Separate the intervals in which the function

(*+*+!) /(*--* + l)

is increasing or decreasing.

5. Determine the intervals in which the function (4-x8
)
8

is increasing:
or decreasing. Also draw its graph.
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6. Find the greatest and least values of the function

x8-9x2
-f24xin[0, 6].

7. Show that x-1
log (i -f x) decreases as x increases from to o .

$. Show that if x > 0,

(/) ,-*-< lo, (!+)< - *.

(//) x- + < log d+x) < x- l\
*

- (B.U. 1953)

9. Show that

x < -log(l-x) < x (1 -x)-
1 for < x < 1.

10. Prove that e~x lies between

1-xand 1-x + Jx
2

.

11. Show that sin x lies between

x9
,
x5

12. If < x < 1, show that

Hence taking *
=2/1 + 1'

W > rdcduce that

5. 7957)

13. Show that

tan^c x ifo<x< ..

x sm jc

14. Show that

x-1 > logx> (jc-l)x-
1
,

and jc~l > 2xlogx > 4 (x-l)-2 log*

for x > 1. (M.T.)

15. If/(x) is derivable in the interval [a-h, a+h], prove that

where < ^ < 1 ;

(a+h)-2f(a)+f(a-h
where < fl t < 1.

* 16 The derivative of a function /(x) is positive for every value of x in an

interval [c-A, c], and negative for every value of x in [c, c+h] ; show that /(c)

b the greatest value of the function in the interval [c-h, c+h].

6-6. Higher mean value theorem or Taylor's development of

function in a finite form. // a function f(x) possesses the derivatives

f'(x)>f"(x)'f'"(x)>
..... /"(*)> UP to a certain or^er n f r every value *

x in the interval, [a, a+h], then there exists at least one number 0,

between and 7, such that
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f(a + h)=f(a)+hf'(a)+*
f
f" (a)+

We define a new function 9(x) involving /(x) and its drivatives

f'(x)>f"(x), ...... , fn
(x) designed so as to satisfy the conditions for

Rollers theorem. Let

^ ......
,i *

where A is a constant to be determined such that

Thus we get A from the equation

- A

Now, it is given that/(x), f'(x),f"(x) ....... , fn
~\x) are derivable

in the interval [a, a+h].

Also, a+h-x, (a+A-x)2
/2 !, ........ , (a+h-x)"ln I are deriv-

able in [a, a+h]. Therefore <t(x) is derivable in [a, a-f^]- Also

f'(x)=f(x)-f'(x)+(a+h-x)f*(x)-(a+h-x)f'(x)

ether terms cancelling in pairs.

Thus <p(x) satisfies all the conditions for Rolle's theorem. There
exists, therefore, at least one number 6 between and 1 such that
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f"(a+6h)=A ; for (1-

Substituting this value of A in (i), we get

f(a+h)-f(a)+hf\a)+~f''(a)+ ......+^

The (+l)th term

is called Lagrange's form of remainder after n terms in the Taylor's

expansion of/(0-f7z) in ascending integral powers of //.

Note. Taking /?=! we see that Lagrange's mean value theorem is only
a particular case of the Taylor's development obtained here.

Cor. Maclaurin's development. Instead of considering the in-

terval [a, a+h], we now consider the interval [0, x] so that we change
a to and h to x in (//). We get

'

-. ' '-
..(//I)

which holds when the function f(x) possesses the derivatives

f'(x),f"(x), ......... ,/(*)

in the Mervai [0, x].
f

,

The formula (HI)
is known as Maclaurin's development of /(x) in

[0, x] in the finite* form with Lagrange's form of remainder.-

67. Taylor's development of a function with Caiichy's form of

remainder. If a function f(x) possesses the derivatives /'(*)> f"(x ) ......

fn
(x) up to ft certain order n in the interval [a, a +/*], then there exists

at least one number between and 1 such that

;72 /)-i

+_
1) r

/-i (a)

We define a ftew function f(x) as follows

f(x)=/(x)-f (a+h-x)f(x)

where A is a constant to be determined such that
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Thus, we get A from the equation

hn~i
f

It is easy to see that v(x) is derivable in [a, a+h].

Hence <p(x) satisfies the conditions for Rolle's theorem so that
there exists at least one number between and 1 such that

Now, y'(x)~

other terms cancelling in pairs.

o=?'(a+0/o=
ri-i)'i

f n
(a+ 6h)-A

hn '1

Substituting this value of A in (/), we get

.
h* . , ,

The (+l)th term

is called Cauchy's form of remainder after n terms in the expansion
of f(a+h) in ascending integral powers of h.

Cor. Maclaurin's development. Changing a to and h to jc in

(//), we get

which is known as Maclauriris development off(x) in the interval

[0. x] with Cauchy's form of remainder after n terms. It holds when

f(x) possesses ^derivatives /'(*), /"(*), ......
, fn

(x) in [0, x].

Ex. 1. Show that
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Substituting these values in (Hi) ( 6*7, p. 142), we obtain the result,

Ex. 2. Show that, for every value of x

JC
3

JC
5 X***1~

JC
8

X^
"2~!

+
4!

Ex. 3. Show that

Ex. 4. Find, by Maclaurin's theorem, the first four terms and the re-

mainder after n terms of the expression of eax cos bx in terms of the ascending
powers of x.



APPENDIX

Examples

1. Show that the number 6 which occurs in the Taylor's theorem
with Lagrange's form of remainder after n terms approaches the limit

ll(n-\-J)ash approaches zero provided that f
n+1

(x) is continuous and

different from zero at x=a. (D.U. Hons. 1950)

Applying Taylor's Theorem with remainders after n terms and

(rt-f-1) terms successively, we obtain

f(a+h)=f(a)+hf'(a)+ ......+ n-l \

f n

These give
* hn hn

-

,-

/(+*)=- , f n()+
(n+l) ,/"(+'*),

or fn(a+eh)-f
n
(a)=n

h

+l f<*\a+e'h).

Applying Lagrange's Mean Value Theorem to the left-hand side,

we have

1 f
n+ i '/"+

Let h -> 0.

lim 0=^.
2. Show that

x*>(l+x) [log (l+ x)]*for x>0.

We put f(x)= x*-
(
1 +x) [log (

1+ x)].

.-. /'(x)=2x-l. [log (l+x)]-(l+x). 2

=2x-[log (l+x)]
2-2 log (l+x).

The form of/'(*) is such that we cannot immediately decide

as to its sign. We, therefore, proceed to determine the second deri-

vative.

145
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/"(x)=2-2 log (l+x).l/(l+ x)-2/(l+x)

which is >0 for x>Q. (See Ex. 3, p. 139)
'

/'(*) i"3 monotonically increasing in the interval [0, oo
).

Also

/'(0)=0.
Therefore

f'(x)>Qforx>0.
, Hence f(x) is monotonically increasing in the interval [0, oo).

Also

/(0)=0
Therefore

f(x)>0 for x>0.
Hence

x>(l+x)[log (1+*)]
2 for x>0.

3. If <p"(x)>Q for every value of x, then

f[*(*!+*)]< tt*(*i)+ *(*.)],

for 'every pair of values of x1 and xz .

Suppose that xa>xt .

We write

Applying Lagrange's mean value theorem to the function

for the intervals [xl9 (x l+x2)/2] and [(x1+x2)/2, X
2 ]
we see that there

exist numbers 19 % belonging to the two intervals respectively, such

that

and

[fK*i+*i)-^(*i)]= [K*i+^) -*i]^
f

(i)=l(*i-^'(&) -(3)

Thus from (1), (2), (3), we obtain

Applying the mean value theorem to the function 9' (x) for the
interval [^, |2], we see that there exists a numer y such that

9'(&)-9'(4i)=(!t-Si)9"(*)- ..(5)

From (4) and (6), we obtain
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Since Jt
a

x
l9 |2 i

an(* ?"(?) are ftll positive, we obtain the

required result.

Exercises

1. Show that *0Mwhich occurs in the Lagrange's mean value theorem)
approaches the limit i as 'A' approaches 0, provided that/

7 '

(a) is not zero.

(P.U. 1949 ; ).(/. Hons. 1949)

[It should also be assumed that f"(x) is not continuous.]
2. Show that

/(a+/0=/(aHV/W+4*i/
//
(fl+ 0/0,

-where lies between and 1 and prove that

lim 0=J,
H-+Q

specifying the necessary conditions. (C.U. Hons. 1953)

3. Assuming f"(x) continuous in [a, b] 9 show that

where c and both lie in [a, 6].

(Take <v(x)^f(x)+Ax+ Bx* and determine /4, B such that

Now apply Rollers Theorem to the intervals [a, c] and [c, 6].]

4. The second derivative /"(*) of a function f(x) is continuous for

^^*^^ anc^ at eac^ P^nt x tlle s*8ns of /(x) and /"(jc) are the same. Prove that

iff(x) vanishes at points c and d, where a<^c<d<^b, then it vanishes everywhere

between c and d. (B.U. 1952)

5. /(*) 9(*) an(* ^U) are three functions derivable in an interval (a, b) ;

*how that there exists a point such that

f(b)
Deduce Lagrange's and Cauchy's mean value theorems.

6. Prove that

lim
/

if/
7/

(jc) exists.

7. Discuss the applicability of Rolle's Theorem when

(/) /U)tan x and a=0, b^n.

.

(m) /W=U-c) 3 -c 3 when a=0 and 6=2c

(iv)



CHAPTER VII

MAXIMA AND MINIMA

GREATEST AND LEAST VALUES

7'1. In this chapter we shall be concerned with the application
of Calculus for determining the values of a function which are greatest
or least in their immediate neighbourhood technically known as

Maximum and Minimum values. A knowledge of these values of a
function is of great help in drawing its graph and in determining its

greatest and least values in any given finite interval.

It will be assumed that/(x) possesses continuous derivatives of

every order that come in question. %

Maximum value of a function. Let, c, be any interior point
of the interval of definition of a function /(x). Then we say that/(c)
is a maximum value of/(*), if it is the greatest of all its values for

values of x lying in some neighbourhood of c. To be more definite

and to avoid the vague words 'Some neighbourhood', we say that

f(c) is a maximum value of the function, if there exists some interval

(c8, c+S) around c such that

for all values ofx, other than c, lying in this interval.

This, again, is equivalent to saying that

f(C) is a maximum value of /(;c), if

c _ 8 c c+8 f(c) > f(c+h), i.e., f(c+h)-f(c) <

for values ofh lying between 8 and S, i.e., for values of h sufficiently
small in numerical value,

Minimum value of a function, /(c) is said to be a minimum value

of/(#), if it is the least of all its values for values of x lying in some

neighbourhood of c.

This is equivalent to saying that f(c) is a minimum value off(x)

if there exists a positive 8 such that

f(c) <f(c+h), i.e.J(c+h)-f(c) >

for values ofh lying between 8 and 8, i.e., for values of h sufficiently
small in numerical value.

Note 1. The term extreme value is used both for a maximum as well as
for a minimum value, so that /(c) is an extreme value iff(c+h) f(c) keeps an
invariable sign for values ofh sufficiently small numerically.

148
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Note 2. While ascertaining whether any value /(c) is an extreme value or
not, we compare /(c) with the values of the function for values of x in any
immediate neighbourhood of c, so that the
values of the function outside the neighbour-
hood do not come into question at all.

Thus, a maximum value may not be the

greatest and a minimum value may not be the
least of all the values of the function in any
finite interval. In fact a function can have
several maximum and minimum values and a
minimum value can even be greater than a
maximum value.

A glance at the adjoining graph of f(x)
shows that the ordinates of points P19 P3 , P5

are the maximum and the ordinates of the points
P2 , P4 are the minimum values of f(x) and that Fig. 49.

the ordinates of P4 which is minimum is greater than the ordinate of Px whi:h is

a maximum.

7-2. A necessary condition for extreme values. To prove that a

necessary condition for f(c) to be an extreme value off(x) is that

Let f(c) be a maximum value of f(x)<

There exists an interval (c S, c+8), around c, such that, if,

c-\-h is any number, belonging to this interval, we have

/(c+/0</(c),

Here, h may be positive or negative. Thus

'^<0iffc>0, ... (0

If h tends to through positive values, we obtain from (/),

/'(c)<0. .-(Hi)

If A tends to through negative values, we obtain from (),

/'(c)>0. ... (iv)

The relations (in) and (/v) will simultaneously be true, if and

only if

/'(c)=o.

It can similarly be shown that /'(c)=0, if /(c) is minimum
value off(x).

Cor. Greatest and least values of a function in any interval. The

greatest and least values off(x) in any interval [a, b] are either f(a)

andf(b), or are given by the values of x for w/i/c/i/'(x)=0.

The greatest and least value of a function are also its extreme

values in case they are attained at a point strictly within the interval

so that the derivative must be zero at the corresponding point.

The theorem now easily follows.
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Note 1. Geometrically interpreted, the necessary condition

for extreme values obtained above states : "Tangent to a curve at a

point P where the ordinate is a maximum or minimum is parallel to

x-axis."

When stated in this geometrical form, the theorem appears
almost self-evident. [Refer Fig, 48 ; p. 149.]

Note 2. The vanishing off (c) is only a necessary but not suffi-

cient condition forf(x) to be an extreme value. To see this, we consider

the function /(Jc)==x
3 for x=Q.

For value of x greater than 0,/(x) is positive and is, therefore,

greater than/(0) which is
;
and for values of x less than 0, f(x) ia

negative and is, therefore, less than/(0).

Thus/(0) is not an extreme value even though /'(0)=0.
Note 3. Stationary value. A function f(x) is said to be stationary

for x^cif the derivative f (x) vanishes for x=c, i e. 9
if /'(c)= ;

also

then f(c) is said to be a stationary or a turning value of f(x). The
term stationary arises from the fact that the rate of change /'(#)

of the function f(x) with respect to x is zero for a value of x for which

f(x) is stationary.

It will be noted that a maximum or a minimum value is also a

stationary value but a stationary value may neither be a maximum
nor a minimum value.

Ex. 1. Find the greatest and least values of

in the interval [0, 2J.

Let

Thus

/'(*)=0forx=l, -1, J.

The value x= 1 does not belong to the interval [0, 2] and

not, therefore, to be considered.

Now

Also

Thus the least value is 1 and the greatest value is 21.

Ex. 2. Find the greatest and least values of

in the interval [-2, 5].

Def Change of Sign. A function is said to change sign from

positive to negative as x passes through a number c, if there exists

some left-handed neighbourhood (c ft, c) of c for every point of

which the function is positive, and also there exists some right-

fhanded neighbourhood (c, c+h) of c for every point of which the

unction is negative.
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A similar meaning with obvious alterations can be assigned to

the statement "A function changes sign from negative to positive, as

x passes through c".

It is clear that if a continuous function /(x) changes sign as x

passes through c
y
then we must have/(c)=0.

Ex. 1. Show that the function

<?(x)
= (x+2)(x-m2x- l)Cx~3)

changes sign from positive to negative as x passes through 4 and from negative
to positive as x passes through 2 or 3 ; also show that it does not change sign

as x passes through 1.

Ex. 2. Show that the function

changes sign from positive to negative as x passes through 4 and 1 and from

negative to positive as x passes through .* and 2.

72. Sufficient criteria for extreme values. To prove that f(c) is

an extreme value off(x) if and only iff'(x) changes sign as x passes

through c, and to show that f(c) is a maximum value if the sign

changes from positive to negative and a minimum value in the contrary

case.

Case I. Let f(x) change sign frcm positive to negative as x

passes through c.

In some left-handed neighbourhood of c,f'(x) is positive and so

/(x)is monotonically increasing in his neighbourhood. (6*32, p. 136),

Therefore /(c) is the greatest of all the values of /(x) in this left-

handed neighbourhood.

In some right-handed neighbourhood of c, f'(x) is negative and

so f(x) is monotonically increasing in this neighbourhood ( 6*33,

p. 136). Therefore /(c) is the greatest of all the values off(x) in this

right-handed neighbourhood.

Hence f(c) is the greatest of all the values of /(x) in a certain

complete neighbourhood of c and so, by def., f(c) is a maximum value

of/(x).

Case II. Let f'(x) change sign from negative to positive as x

passes through c.

It can similarly be shown that in this case/(c) is the least of all

the values of /(x), in a certain complete neighbourhood of c and so,

by def., /(c) is a minimum value of/(x).

Case III. If /'(x) does not change sign, i.e., has the same sign

in a certain complete neighbourhood of c> then /(x) is either mono-

tonically increasing or monotonically decreasing throughout this

neighbourhood so that/(c) is not an extreme value of/(x).

Note. Geometrically interpreted, the theorem states that the tangent to

a curve at every point in a certain left handed neighbourhood of the point P

whose ordinate is a maximum (minimum) makes an acute angle (obtuse angle)

and the tangent at any point in a certain right-handed neighbourhood of P mak
r
e
JJ

an obtuse angle (acute angle) with x-axis. In case, the tangent on either suit of r

makes an acute angle (or obtuse angle), the ordinate of P is neither a maximum
nor a minimum.
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Ex. I. Examine the polynomial

10x6 24x5+15x4~4Qx8+108

for maximum and minimum values.

Let

t 2)

=60x*(x
2
+l)(x-2)

Thus, /'(;t)=0 for x-=0 and x=2 so that we expect extreme

values off(x) for #=0 and 2 only.

Now,
forx<0, /'(*)<<>;

forO<x<2 /'(x)<0;

forx>2 3 /'(*)> 0.

Here,/'(*) does not change sign as x passes through so that

/(O) isjieither a maximum nor a minimum value,

Also, since f'(x) changes sign from negative to positive as x

passes through 2, therefore/(2) = 100 is a minimum value.

Ex. 2. Find the extreme values of

and distinguish between them.

Let

24

pig, 50

/

so that /(x)=0 for x=l, 2, 3.

Therefore, /(x) can have extreme values

for *==-!, 2, 3 only.

Now, for* <1, /
x

(x)<0;
for 1<*<2, /'W>0 ;

for2<x<3,

forx>3,

Since /'(x) changes sign from negative

to positive as x passes through 1 and 3,

therefore/(l)--8 and/(3)=-8 are the two minimum values.

Again since, f'(x) changes sign from positive to negative as

passes through 2, therefore, .fl2)
-7 is a maximum value.
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Ex. 3. Find the extreme values of

5*+18;c5+15;c*-10.

Ex. 4. Show that the maximum and minimum values of

are -9 and - 1/9 respectively.

Ex. 5. Show that

9x5 +30;c4 +35;c8
-fl5;c

2+l

is maximum when x= 2/3 and minimum when x=0.

Also, find its greatest and least values in the intervals [2/3, 0], and
[-2, 2].

Ex. 6. Show that

jc
8-5x+5;c3-l

has a maximum value when x= l, a minimum value when x=3 and neither when
*=0. (D.U. 1948)

7-4. Use of derivatives of second and higher orders. The derivatives
of the first order only have so far been employed for determining and

distinguishing between the extreme values of a function. As shown
in the present article, the same thing can sometimes be done more

conveniently by employing derivatives of the second and higher
orders.

All along this discussion it will be assumed that f(x) possesses
continuous derivatives of every order, that come in question, in the

neighbourhood of the point c.

7*41. Theorem 1. f(c) is a minimum value off(x) y if

f'(c)=0andf"(c)>0.

Applying Taylor's theorem with remainder after two terms, we

get

f(c+h)^f(c)+hf'(c)+ r(c+0ji) ;

As the value f"(c) off(x) is positive for X c, there exists an

interval around, c, for every point of which the second derivative is

positive. ( 3-51, p. 54)

Let c+h be any point of this interval. Then, c+62h, is also a

point of th''s interval and accordingly /"(C +M) is positive. Also

ft
a
/2 ! is positive.

.Thus we see that there exists an interval around c for every

point/ +A, of which, f(c+h)f(c) is positive, i.e.,f(c)<f(c+h).

Hence /(c) is a minimum value of/(x).
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7-42. Theorem 2. f(c) is a maximum value off(x) 9 if

As in theorem 1, we have by Taylor's theorem,

i'.*., f(c +h)-f(c)=

Asf"(c) is negative, there exists an interval around c for every

point of which the second derivative is negative. Thus as in the

preceding case, there exists an interval around c for every point,

c+h of which /(c+/0/(c), is negative, i.e.,f(c)>f(c+h) ;

Hence /(c) is a maximum value of/(x).

7-43. General Criteria. Let

Thenf(c)is

(i) a minimum value off(x), iff
n
(c)>Q and n is even ;

() a maximum value of(x), iff
n
(c)<0 and n is even

;

(iii) neither a maximum nor a minimum value ifn is odd.

Applying Taylor's theorem with remainder after n terms, we

so that because of the given conditions,

nh).

As/n (c) ?^0, there exists an interval around c for every point
x of which the nth derivative fn

(x) has the same sign, viz., that of

Thus for every point, c-f-A, of this interval, fn
(c+ 9nh) has the

sign offn
(c).

Also when n is even, hn\n ! ;
is positive, whether, h, be positive

or negative and when nis odd, hn
\n !, changes sign with the change

in the sign of h.

Hence, as in the preceding cases we have the criteria as stated.

Note. The result proved in 7*41 and 7*42 is only a particular case of

the general criteria established in^ 7*43 above.
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Examples

1. Find the maximum and minimum values of the polynomial

Let /(x)-=8x
5 --15x4

-l-10x
2

.

/'(x) = 40x4-60x3 +20x

=20x(2x3 ~-3x*+ l)

-20x(x-l)
2
(2x+l).

Hence /'(*)=0 for x=0, 1,- J.

Again /"(x)=-160x
3- 180x2+20

9x2
+l).

Now, /"( )= 45 which is negative so that /( I)
=

T-S-
is a

maximum value.

Again, /"(0)=: 20 which is positive so that/(0)= is a minimum
value.

As/"(l)-0, we have to examine /
//;

(1).

Now /'"(*)= 480x
2-360x.

f'"(l)= l20 which is not zero.

Hence /(I) is neither a maximum nor a minimum value.

2. Investigatefor 'maximum and minimum values the function

sin JC+cos 2jc.

Let

>>=sin x+cos 2x. ...(i)

dyfdx= cos x 2 sin 2x

=cos x 4 sin x cos x.
%

Putting dyldx=Q, we get

cos x=0 or sin x= J.

We consider values of x between and 2ir only, for the given
function is periodic with period 2?r.

Now cos x~Ogives x= - and
j ^

and sin x=| gives x= siii" 1
J and TT sin*1

J,

sin*"1 J lying between and Tr/2.

Now d*y/dx
2= sin x 4 cos 2x.

For x=7r/2, d2
y/dx*=:3 which is positive ;

For x=37r/2, d2
y/dx

2= 5 which is positive ;.

For x=sin~1
J and TT sin*1

J,

df^/rf^^-sin x-4 (1-2 sin2 x)= -15/4
which is negative.
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Therefore y is a maximum for x= sin~"1 J 4 TT sin"1
J and is a

minimum for x=7r/2, 37T/2.

Putting these values of x in (i), we see that |, | are the two
maximum values and 0, 2 are the two minimum values.

Exercises

1. Investigate the maximum and minimum values of

(/) 2x3-15x2+ 36x+10. (P.U.I945)

(it) 3x*-4x3+5.

2. Find the values of x for which xe-6ax3
-f 90

2x4
-f

' has minimum
values. (a>0).

3. Determine the values of x for which the function

12x5-45x<+40x3 -f6

attains (1) a maximum value, (2) a minimum value. (P-U- 1941)

4. Find the maximum value of (x-l)(x-2)(x-3). (P>V. 1939)

5. Find the maxima and minima as well as the greatest and the least

values of the function y=x* 12x2+45x in the interval [0, 7].

6. Find for what values of x the following expression is a maximum or

minimum :

2x3-21x2
4- 36x-20.

7. Find the extreme values of x3
/(x

4
-f 1).

8. Show that (x+ !)*/(*+ 3)
s has a maximum value 2/27 and a minimum

value 0.

9. Show that xx is minimum for x=e~ l
.

10. Show that the maximum value of (1 /*)* is e l
l*.

11. Find the maximum value of (log x)lx in <x<oo . (P.U. 1955)

12. Find the extreme value of a 3* 1~as -x. (a> 1).

13. Find the maximum and minimum values of x+sin 2x in <S x ^ 2*.

14. Find the values of x for which sin x x cos x is a maximum or a

minimum.

15. Find the maximum and minimum values of
x sin 2x-f J sin 3x,

in( *^jc5^0;

16. Show that sin x (1-fcos x) is a maximum when x=$n.

17. Discuss the maxima and minima in the interval [0, n] of the sums

(/) sinx-fisin 2x+ j sin 3x.

(//) cos K^\ cos 2x + $ cos 3x.

Also, obtain their greatest and the least values in the given interval.

18. Find the minimum and maximum values of

(i) sinxcos^x. (i"0 flsecx-f&cosecx, (0<a<6).

(Hi) sinxcos2
x. (/v) ex cos (x a).

19. Show that (3 x)e** 4x^-x has no maximum or minimum value

for x=0.
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20. Find the maxima and minima of the radii vectors of the curve

_a?__ P
ra
~

sin*0
+ "cos l

"fl (Delhi, Aligarh)
21. Find the maximum and minimum values of x*+y* where

ax*+2hxy+by*=l.

[Taking x=rcos 0, y= rs'm 0, the question reduces to finding the ex-
treme value of r

2
, where

-T=fl cos2
0-f 2/i cos $ sin + sin2

0]

7*5. In the following, we shall apply the theory of maxima
and minima to solve problems involving the use of the same. It /will
be seen that, in general, we shall not need to find the second deriva-
tive and complete decision would be made at the stage of the first

derivative only when we have obtained the stationary values. In this

connection, it will be found useful to determine the limits between
which the independent variable lies. Suppose that these limits are

a, b. .

If y is for x=a and xb and positive otherwise and has only
owe stationary value, then the stationary value is necessarily the
maximum and the greatest.

If y -> QO as x -> a and as x -> b and has only one stationary
value, then the stationary value is necessarily the minimum and the
least.

In connection with the problems concerning spheres, cones and
cylinders the following results would be often needed :

1 . Sphere of Radius r.

Volume= ?Ttr*. Surface 47ir.

2. Cylinder of height, h, and radius of circular base, r.

Volume=7rr2
/?. Curved surface =2Trrh.

The area of each plane face Trr
2

.

3. Cone of height, h, and radius of circular base, r.

Semi-vertical angle= tan"1
(/*//*),

Slant height- V(r2 +/*
2
),

Volume= |TT r
2
h,

Curved 8urface=-7Tr\/(r
3
+/j

2
).

Here cones and cylinders are always supposed to be right
circular.

7-6. Application to Problems.

Examples

1. Show that the height of an open cylinder of given surface and

greatest volume is equal to the radius of its base.

Let r be the radius of the circular base
; h, the height ; S9 the

surface and K, the volume of the open cylinder. Therefore,
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Here, as given, S is a constant and V is a variable. Also, h, r

are variables. Substituting the value of h, as obtained from (i), in

(')> we get

which gives V in terms of one variable r.

dV __S
dr~~~ 2

'

so waat ur /u/=v only when r =\/(Sl37i) : negative value of r being
inadmissible. Thus V has only one stationary value.

As V must be
positive, we have

Srnr3 > 0, i.e., Sr > Trr3 or r > y" (S/Tr).

Thus r varies in the interval (0, V (5/7:)).

Now F=0 for the points r=0 and ^/ (S/n) 9
and is positive

for every other admissible value of x. Hence K is greatest for

r=V (S/37T).

Substituting this value of r in (i), we get

c

h = 3?r

2?rr

_2S 1~
3 27T

Hence hr for a cylinder of greatest volume and given surface.

2. Show that the radius of the right circular cylinder of greatest
curved surface which can be inscribed in a given cone is half that of the

cone.

Let r be the radius OA of the base and h, the height OV of the

given cone.

We inscribe in it a cylinder, the radius

of whose base is OP=x
y

as shown in the

figure. We note that x may take up any value

between and r.

To determine the height PL, of this

cylinder, we have

PL r-o:

r
'

PL PA=~'

Fis. 51.
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If S be the curved surface of the cylinder, we have

S=27T. OP.PL =-?5^?L^^ (rx-x
2
),

^J^ (r-2x) =0 for x=r/2.
dx r

Thus S has only one stationary value.

Now S is for x=0 and x=r and is positive for values of x

lying between and r.

Therefore S is greatest for x=r/2.

3. Fi/irf //* surface of the right circular cylinder of greatest

surface which can be inscribed in a sphere of radius r.

We construct a cylinder as shown in the figure. OA is the

radius of the base and CB is the height of this cylinder.

Let Z_AOB==0 t
so that

lies between and 7T/2.

OA^ Q=008 0.

=OB cos 0=r cos 6.

AB
OB =sm 0,

.-. AB=OBsm 0=rsin 6.

IfS be the surface, we have

5=27r. OA* +2v.OA.BC.

=27rr2
(cos

20+sin 20). ..(1)

dS
Fig. 52.

=27r/-2
(

2 cos sin 0+2 cos 20)

= 27rr2(2 cos 20 sin 20).

=0 gives

2 cos 20 sin 20=0, i.e., tan 20=2.

Let, 0j, be a root of tan 20= 2.

As tan 20X=2, .-. sin 201
= 2/\/5 and cos 201=l/'V/5.

From (1) ,we see that

when 0=0, S=27rr2
;
when 0=7T/2, 5=0,

...(2)

when 0=0,, 5=27rr2 (1+^^+ sin
20,)

which is greater than Sirr
2

.

Hence
wr

is the required greatest sjurface. (Cor. p,149),
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4. Prove that the least perimeter of an isosceles triangle in which
a circle of radius r can be inscribed is Qr^/3. (P. u. 1934)

We take one vertex A of the triangle at a distance x from the
centre O. Let AO meet the circle at P. The two tangents from A

. and the tangent at P determine an isosceles

triangle ABC circumscribing the given circle.

We have OL~r.

Also BP=AP tan /_BAP

B p r
Fig. 53. If* P> denote the perimeter of the triangle,

we have

p=AB+AC+BG
=2AB+2BP
=2(AL+LB)2BP

=2AL+4BP, (for, BL=BP)

-rr

"dx

=22{x+r)(x*-r
z
)-x(x+r}

z

so that dpjdx=0 for x 2r
; negative value, r, of x being in-

admissible.

Now, x may take up any value >r only, so that it varies in

the interval (r,
oo

).

From (i), we see that p -> oo as x -> r.

Again, dividing the numerator and denominator by x2
, we get

so that p - x also as X->QO .

Hence p is least for x=2r. Putting this value of x in
(/), we

see that the least value ofp is
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5. A cone is circumscribed to a sphere of radius r ; show that

when the volume of the cone is a minimum, its altitude is 4r and its

semi-vertical angle sin~i f (Madras 1953 ; P.U. 1930)

We take the vertex A of the cone at a distance x from the

centre O of he sphere. .(See Fig. 53. p. 160).

By drawing tangent lines from A, as shown in the figure, >ve

construct the cone circumscribing the sphere.

Let the semi- vertical angle BAP of the cone be 0.

Now, if v be the volume of the cone, we have

V=i7T .BP*. AP,
which will be now expressed in terms of x. We have

Since sin =7=r-,= ,
.'. tan 0=

OA x

A
BP , *

Again, since -=tan 0,A L

mi (r+x)
2r2

, ,

. Trr
Thus v=ir\,- 9

----
9 (x+r)=2 2 v ^ '

--
r)

Thus dvjdx is for x=3r.

Here x can take up any value^r and v -* cc when x >> r and
when x -> QO . Thus t; is minimum and least for x=3r.

Hence, for minimum volume, the altitude of the cone

and the semi-vertical angle

= sin-1 ~sin-1r = sin~1 i.
x 3r ^

6. Normal is drawn at a variable point P of an ellipse

find the maximum distance ofthe normalfrom the centre of the ellipse.

(P.U. 1935)

We take any point P(a cos 6, b sin 0) on the ellipse ; being
the eccentric angle of the point.

The equation of the tangent at P is -p -r =1.

Therefore, slope of the tangent at P~ -----
. -r & a sin

Hence, slope of the normal at P=t---- -
1 * b cos
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Therefore equation of the normal at P is

, . a sin ,
/ y-b sm 0=^~ (x-a

<5r :
"

0x : sin 0by cos 0=(a2 2
)
sin cos 0.

tance

jm (9
cosj?

*~6+b*^o&

/ 2 ka\ ^2 cos4 <
-

,-- - ( CL u \ --------- ------ - - - -

(a
2 sin2 6-} ft

2 cos2

Putting dpld6=Q, we get

,. >P> be its perpendicular distance from the centre (0, 0), we
obtain

Because of the symmetry of the ellipse about the two co-ordi-
nate axes, it is enough to consider only those values of 6 which lie

between and 7r/2 so that we reject the negative value of tan 0.

Now, />=0 when 0=0 or 7T/2 and p is positive when lies

between and 7T/2. Therefore p is maximum when tan 0=v'(^0-
Substituting this value in (/), we see that the maximum value of
p is a b.

7. Assuming that the petrol burnt (per hour) in driving a motor
boat varies as the cube of its velocity, show that the most economical
speed when going against a current ofc miles per hour is | c miles per
hour.

Let v miles per hour be the velocity of the boat so that (v -c)
miles per hour is its velocity relative to water when going against
the current.

Therefore the time required to cover a distance of d miles

d u
-

3= hours.
v c

The petrol burnt per hour=A:v8
,
where k is a constant. Thus

the total amount, y> of petrol burnt is given by
, v*d

7 , t8

y=k =fo/ .

.' vc VC

dv (v c)
2

Putting dy/dv=0 y
we get 0=0 and |# Of these r;=0 is in-

admissible.

Also y _> oc when t? -> c and when _> oo .

Thus v=^c gives the least value of y.
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Exercises

1. Divide a number 15 into two parts such that the square of one

multiplied with the cube of the other is a maximum.

2. Show that of all rectangles of given area, the square has the smallest

perimeter.

3. Find the rectangle of greatest perimeter which can be inscribed in a
circle of radius a.

4. If 40 square feet of sheet metal are to be used in the construction of

an open tank with a square base, find the dimensions so that the capacity is

greatest possible. (P-U.)

5. A figure consists of a semi-circle with a rectangle on its diameter.

Given that perimeter of the figure, is 20 feet, find its dimensions in order that

its area may be a maximum. (Patna, Allahabad)

6. A, B are fijced points with co-ordinates (0, a) and (0, b) and P is a

variable point (x t 0) referred to rectangular axes ; prove that x*o6 when the

angle APB is a maximum. ( p-# 1935 )

7. A given quantity of metal is to be cast into a half-cylinder, /.*., with

a rectangular base and semi-circular ends. Show that in order the total surface

area may be minimum the ratio of the length of the cylinder to the diameter
of its circular ends is */(*+2). (Aligarh 1949)

8. The sum of the surfaces of a cube and a sphere is given ; show that

when the sum of their volumes is least, the diameter of the sphere is equal to

the edge of the cube.

9. The strength of a beam varies as the product of its breadth and the

square of its depth. Find the dimensions of the strongest beam that can be
cut from a circular log of wood of radius a units. (D.U. 1953)

10. The amount of fuel consumed per hour by a certain steamer varies as

the cube of its speed. When the speed is 15 miles per hour, the fuel consumed
is 4J tons of coal per hour at Rs. 4 per ton. The other expenses total Rs. 100

per hour. Find the most economical speed and the cost of a voyage of 1980

miles. (P.V. 1949)

11. Show that the semi-vertical angle of the cone of maximum volume
and of given slant height is tan~N2. (D.V. 1952)

12. Show that the right circular cylinder of the given surface and maxi-

mum volume is such that its height is equal to the diameter of its -base.

13. Show that the height of a closed cylinder of given volume and least

surface is equal to its diameter.

14. Given the total surface of the right circular cone, show that when the

volume of the cone is maximum, then the semi-vertical angle will be sin l
.

15. Show that the right cone of least curved surface and given volume
has an altitude equal to 42 times the radius of its base.

16. Show that the curved surface of a right circular cylinder of great-

est curved surface which can be inscribed in a sphere is one-half of that of the

sphere.

17. A cone is inscribed in a sphere of radius r ; prove that its volume as

well as its curved surface is greatest when its altitude is 4r/3.

18. Find the volume of the greatest cylinder that can be inscribed in a

cone of height ft and semi-vertical angle a. (D.U. 1955)

19. A thin closed rectangular box is to have one edge n times the length

of another edge and the vojume of the box is given to bev. Prove that the

least surface s is given by
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JO. Prove that the area of the triangle formed by the tangent at anj

point of the ellipse x*la*+y*lb
9**l and its aves is aminimuu for the point

21. Find the area 9f the greatest isosceles triangle that can be inscribed

in a given ellipse, the triangle having its vertex coincident with one extremity
ef the major axis. (Allahabad 1939)

22. A perpendicular is let fall from the centre to a tangent to an ellipse.

Find the greatest value of the intercept between the point of contact and the

foot of the perpendicular.

23. A tangent to an ellipse meets the axes in P and Q ; show that the

least value of PQ is equal to the sum of the semi-axes of the ellipse and also

that PQ is divided at the point of contact in the ratio of its semi-axes.

24. N is the foot of the perpendicular drawn from the centre O on to the

tangent at a variable point P on the ellipse x*la
2+y2

lb*=l (a>b). Prove that

the maximum area of the triangle OPN is (a
2 i

2
)/4.

25. One corner of the rectangular sheet of the paper, width one foot, is

folded over so as to just reach the opposite edge of the sheet ;
find the mini-

mum length of the crease.

26. If f'(x) exists throughout an interval a^x^b, prove that the great-
est and least value of/(x) in the interval are either /(a) and/(fc) or are given by
the values of x for which /'(*)=0.

A grocer requires cylindrical vessels of thin metal with lids, each to con-
tain exactly a given volume V. Show that if he wishes to be as economical as

possible in metal, the radius r of the base is given by 2wr8=V.

If, for other reasons, it is impracticable to use vessels in which the dia-

meter exceeds three-fourths of the height, what should be the radius of the base
of each vessel ? (P.U.)

27. A tree trunk, /, feet long is in the shape of a frustum of a cone the
radii of its ends being a and b feet (a>b). It is required to cut from it a beam
of uniform square section. Prove that the beam of the greatest volume that

can be cut is alll(a-b) feet long. (Agra ; P.U.)

28. Find the volume of the greatest right circular cone that can be des-
cribed by the revolution about a side of a right-angled triangle of hypotenuse
1 foot. (P.U. 1940)

29. A rectangular sheet of metal has four equal square portions re-

moved at the corners, and the sides are then turned up so as to form an open
rectangular box. Show that when volume contained in the box is a maximum,
the depth will be

where a, b are the sides of the original rectangle. (Banaras 1953)

30. The parcel post regulations restrict parcels to be such that the length
plus the girth must not exceed 6 feet and the length must not exceed 3 feet

Determine the parcels of greatest volume that can be sent up by post if the
from of the parcel be a right circular cylinder. Will the result be affected if the

greatest length permitted were only If feet. (Patna)

31. Show that the maximum rectangle inscribable in a circle is a square.
(P.C7. Suppl 1944)



CHAPTER VIII

EVALUATION OF LIMITTS

INDETERMINATE FORMS

8'1. We know that x -> a,

F(x) hmF(x)
so that this theorem on limits fails to give any information regarding
the limit of a fraction whose denominator tends to zero as its limit.

Now, suppose, that the denominator F(x) -> as x -> a.

The numerator f(x) may or may not tend to zero. If it does

not tend to zoro, then f(x)/F(x) cannot tend to any finite limit. For,
if possible, let-it tend to finite limit, say /. We write

so that, in this case, we have

lim/(x)=lim [fe . F(x)
]

lim . lim F(x)=/.0=

Thus we have a contradiction.

Three types of behaviour are possible in this case. The fraction

may tend to + oo
,
or oo

,
or it 3 limit may not exist. For example,

when JC -> 0, (so that the limit of the denominator in each of the

following cases is 0), we see that

(i) lim (I/*
8
)=+oo ; (//) lim(l/-Jt

a
)=:-ao ;

(Hi) lim (I Ix) does not exist.

The case where the limits of the numerator of a fraction is ale

zero is more important and interesting. A general method of deter-

mining the limit of such a fraction will be given in this chapter. For
the sake of brevity, we say that a fraction whose numerator and
denominator both tend to zero as x tends to a, assumes the indetermi-

nate form 0/0 for x=a.

It may be of interest to notice that the determination of the

differential co efficient dyjdx is itsolf equivalent to finding the limit

of a fraction 8yjbx which assumes an indeterminate form 0/0.

Other cases of limits which are reducible to this form will also

be considered in this chapter.

In what follows it will always be assumed that /(x), F,x) and

<(.x) possess continuous derivatives of every order that come in

question in a certain interval enclosing x^=a.

165
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8-2. The Indeterminate form -^ . To determine

lim [

x-*a
when

lim /(x)=0 Urn F(x).

As/(x), F(x) are assumed to be continuous for x=0, we have

f(a)= lim yfr-0 ;* = lim Fx=Q.

By Taylor's theorem, with remainder after one term, we have

Hence

ri
f

y._ J \u ) :f pt
\f f,\ Tflf/**\i
ttli Jj \CL\

This argument fails if F'(a)=0. The case when F'(a)=Q but
~
has already been discussed in 8-1.

Now, lQtf'(a)=F'(a)=0.

Again, by Taylor's theorem with remainder after two terms,
we get

Hence

lim -^-li

= lim

h^(
The case of failure which arises when -F"(a)=0 can be examined

as before* In general, let

f(a)=*f'(a)=*f"(a)=* =

F
Mid
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By Taylor's theorem, with remainder after n terras, we get

/iti-i An
+ ...+ ^Lfn-i(a)JL. f(a+6nh)

hn

l

--
]
F^(a)+ ~- F(a+0'nh)

~ F(a+6'nh)

Hence

Ex. 1. Determine lim

{

-.
x sin x

{

F(x)=x sin jc
;

f'(x)=e*+e-*- r~,
F'(x)=x cos x+sin x.

Again
)= x sin JC+2 cos x,

., where x ->0.'

-. /(0)=0,
-. . F(0)=0.

. /'(0)=0,

'. F'(0)=0.

... /"(0)= 2>

F"(0)=2._-
hm ---- ~

x _.>

The process may be conveniently exhibited as follows :-

*- e-_21og(l+ x)

x cos

e'-e-a+2/(l+x)8 z _
^o -x sin x+2 cos x~ 2

~

Ex. 2. Find the values ofa and b in order that

f . x(l+ a cos x) b sin x
fim ^ - '- - .nm

3
x~>0 *

ay be equal to L ' U. 1944, 1959)
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The function is of the form (0/0) for all values of a and 6.

,. x(l+acosx) -frsinx
hm ->-i------

-3'
x ->

x

,. l+a cos x ax sin x b cos x=
. 3x2 :

'

x -> JX

The denominator being for x=0, the fraction will tend to a

finite limit if and only if the numerator is also zero for x=0. This

requires

Again supposing this relation satisfied, we have

l+a cos xax sin x b cos x

3x26X

.. 2# sin xax cos x+& sin x= hm ------ -

,.

-

x-*a bx

. 30 cos x+tf* sin x+fe cos x

A *}/

As given, A =1, i.e., 6 3a= 6.

From (1) and (2), we have

Ex. 3. Determine the limits of the following

C X , lv x..v

.... f . fsm x x cos x cosh A: cos A:

-

( V)
_ (x->0). (vi) ,- M -,,-v -.7

log cos x v ;

Jog(14-6x)

(D.C/. //b/i5. 7952)

Ex. 4. Evaluate the following :

Jim
*"

. ^^ Af
.(D.U.1952) (//) lim

(D. U. Hons. 1951, P.U. 1957)

i
" '

\ 1'
0*1* .* *v ^v

/ r\ T

(D.U. 1955)
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Ex. 5. If the limit of

sin 2x+a sin x

X9

as x tends to zero, be finite, find the value of a and the limit. (P.U.)

8*3. Preliminary transformation. Sometimes a preliminary
transformation involving the use of known results on limits, such as

.. sin x .. tan x .

hm =1, lim =1
x -> * x-> x

simplifies the process a good deal. These limits may also be used to

shorten the process at an intermediate stage.

i? * IT- j |. 1+sin x cos x+log (1x)Ex. 1. Find hm 5
J

, (x ~> 0).x tan2x v '

The inconvenience of continuously differentiating the denomi-

nator, which involves tan2x as a factor, may be partially avoided as

follows. We write

1 + sin x cos x+log (1 x)

x tan^x

1+ sin xcos x+log (1 x) / x \ 2

~~
x3

"

\tan x/

,. 1+ sin x cos x+log (1 x)
101

x tan2x

1-j-sin xcos x+log (1 x)

x3A x-*

1+sin xcos x+log (1 x)
- - ~ ~ - - ~

. L

x >0

1 + sin x cos x+log(l x)
lim -3
jc^O x

To evaluate the limit on the B.H.S., we notice that the numera-
tor and denominator both become for x=0.

.. l+sin x cos x+ log (I x)hm 3x

1
cosx fsui-v-

-cos x^sin x-
T------_
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Ex, 2. Evaluate the following :

.. cosh # cos x
x un x

We have

cosh xcos x cosh x cos x x

x g
-

n ^
=

^g sin x
*

,. cosh x cos x ,. cosh x cos x .. x
lira -----..... = lim ------ . hmxsmx x*

. cosh x cos x

Since the numerator and denominator are both zero for x=0,
therefore

I*

CQsh x cos x __ ,. sinh *+sin x
i rvi _ Aim

^ O Y
~~

,. cosh x+cos x
lim ____iim -

x->0 J

=1.

Ex. 3. Determine the limits of the following functions :

(i) -"J~. te -
0). dV) log (1-) cot x. ( -> 0).

*..(- o,

8-4. The Indetermine form ~. Tc? determine
00

ton

lim /(x)= oo = //m F(x).

*Let f'(x)IF'(x) -+ I asx-+a. It mil be shown that f(x)/F(x)
also -> /.

Suppose, x>a. As f\x)IF'(x) -> /, when x -> a, we make it

arbitrarily near / by taking x sufficiently near a, say between a, and

a+8.

I*Another proof is given io the following sub-section.]
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We now take any two numbers c and x which lie between a

and a+8 and apply Cauchy's mean value theorem f(x) and F (x) for

the interval (c, x). We thus have

F(x)-F(c)

where lies between c and x and, therefore, between a and a
We re-write (/) as

/'(I) 7"T~T~I'

F(x) l-FWlFWJ'F'fc) a x c a+S

Keeping c fixed, we make x -> a. Tlien/(c) and F(c) are fixed

and, by our hypothesis, f(x) and F(x) tend to infinity.

1 F(c)
Therefore,

Y-f(c{ f(x)
1 as *~*00 ' Thus ^)/^W can be

made arbitrarily near / by taking x sufficiently near a so that it -W
as x -> a through values greater than a.

Similarly, it may be shown that/(x)/F(x) -* / as x -> a through
values less than a.

Hence

,. ,. /'(*)hm ^ hm

when
lim /x= oo =s lim

Note. The above investigation rests on the hypothesis that /'(x)/F'(*)
tends to a limit as x -+ a. This part of the hypothesis necessarily implies that

f'(x)IF'(x) has a meaning for values of x near a so that f'(x), F'U) both exist

and F'OOs^O for such values. This justifies the use of Cauchy's mean value

theorem in the above investigation.

8*41. A proof of the above result is also often given asfollows :

lim /(*):= oo and lim F(x)= oo
,

A*)
F'(x)

3BES
f'(x)
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Let

lim [f(x)IF(x)]= I where /^O and

.-, from (1), we get

Supposing now 1=0.

.-. /+.-U-^ + l-

Applying the above result,

F'(x)

/= m^)

)

- ...(8)

Finally let /=*> so that

By the preceding result,

. .. F(x) .. F'(x)0=hm . - =lnn -

r -<
'

i)*' - (4)

Hence we see that always

- ^ - "m^ - <>

when lim/JC = 30 lim JPx.

,
Note 1. The above second proof is incomplete in the sense that it

assumes that Urn lf(x)IF(x)] exists. The first proof did not assume this
existence.

Note 2. While evaluating

Urn
-j~r*

when it is of the form .

we must try to change over to the form 0/0 as soon as it may be conveniently
possible, for, otherwise we may go on indefinitely without ever arriving at the
end of the process.
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Ex. 1. Determine lim y-p^ L, as

Here, the numerator and the denominator both tend to oo as x
tends to a.

I

log(x-a) .. x a
.-. lim T--~-JT --L = Inn =-*

= lim -JT-

e*

Ex. 2. Determine the limits of the following functions :

w,. A i ^ log tan 2x 1
Hint, log tan 2x=

,

-

tan x log tan * J

(v/) log (l~.v) cot (xw/2), U -> 1).

8-6. The indeterminate form 0*oo . 7b determine

Urn [/(x).
x->a

when
lim /(x)=0,

To determine this limit, we write

so that these new forms are of the type 0/0 and oo /oo respectively
and the limit can, therefore, be obtained by 8*2 or by 8-4.

In this case, we say that /(*). f(x) assumes the indeterminate
form O'oo at x=a.

Ex. 1. Determine lim (x logx), as x->0.

We write

x log x-
f/i

_.

lim (x log x)- lim ^ (*-)

lim r=
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The reader may see that writing

xlogx=
*

(I/log x)
which is of the form (0/0) and employing the corresponding result of
8-2 would not be of any avail.

'

haye
Note - we know that 1 lx does nottend to a limit as x -* 0. In fact we

lim =00,
*-(0+0) *

*-(0-0)

* *
Ag ~

in ' log x is defined for positive values of x only so that there is no
question of making x -> through negative values while determining

lim (xlogx).
x->0

Thus, here x <+ really means x -> (0+ 0) so that 1 /* does tend to a limit.

Ex. 2. Determine the limits of the following functions :

(/) x log tan x, (x -* 0). (//) x tan (w/2-x). (x -* 0).

(///) (a~-x) tan (nxfta), (x -> 0).

8-6. The Indeterminate for oo <*> . 7b determine

lim [f(x)-F(x)l
x -> a

when

lim /(x)=<x>
X->fl

We write

so that the numerator and denominator both tend to as x tends to
a. The limit may now be determined with the help of 8*2.

In this case, we say that [/(x) F(x)] assumes the indetermi-
nate form oo oo for x=a.

Note. In order to evaluate the limit of a function which assume! the
form, oo -oo

, it is necessary to express the same as a function which assumeg
the form 0/0 or oo/oo.

Ex. 1. Determine

We write

_1___1 tog (X- !)-(*-
x-2 log (x-1) (x-2) log (x-1)

'

and see that the new form is of the type 0/0 when x -* 2.

*. _ __L__1 r iog(y~i)-(y~2
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The numerator and the denominator are both for x=2. On

using the method of 8-2, we may show that the required limit is

Ex. 2. Determine the limits of the following functions :

8'7. The Indeterminate forms,
'

1 , oo . To determine

as x
L ^ '

J
when

(i) limf(x)=:Q ;
lim F(x)=0.

(fl) limf(x)=0; lim F(x)=<x> .

(Hi) //w/(jc) = oo
;
lim F(x)=0.

We write

so that

In each of the three cases, ^ e see that the right hand side

assumes the indeterminate form 0. oo and its limit may, therefore, be
determined by the method given in 8*5.

Let lim [^(*),log /(*)]==/.
x-> a

;\ limlogj;=/,

or log lim y=l or lim y=e*.

Hence lim

or brevity, we say that
j/(x)

^1 assumes the indetermi-

forms , 1, oo respectively for x=a.
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Ex. I. Determine

Urn (x a)
x~a os x -> a. (0 form).

Let

lim log>>= lim {}^~^
I

~~
. = lim (xtf)=0.

Hence log lim }>=0, i.e., lim y~e<>= :

Thus lim (x a)
x~a=I when

Note. Here it is understood that x tends to a through values greater
than a, for otherwise the base (x-a) would be negative and (x a)

x~a would
have no meaning.

Ex. 2. Determine

1/x2
lim (cos x)

'

tfs x -> 0.

1/x
2

Let y=(cos x)

, log cos x
\f\Ct IT ^^
iv'fti y o

"~

,. , ,. log cos xhm logy= hm ---^

.. tan x 1= lim s~ =
JL-

^JT 2

log (lim y)= i or lim y= e T

x~>0

-
Hence lim (cos x)

' = e *.

x->0

Ex. 3. Determine the limits of the following functions s

(/) x*, (x -> 0). (//) x(l
~'x

)~\ (x -> 1). (P.C7. 7923)

ii) (cot x)
sin ^

, (x ->> 0). (/v)
-

(sin x)
tan x

, (x -> 1.
12).
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(v)

(vii) , (x-->0). (D.C7. 7949)

(viii) x*
*

, (x ->1). (P.C/. 7957)

Exercises

Determine the limits of the following functions :

e_e- x log AC
1- o . > (x ->0). 2.

& -
, (A: -> <>.^2 sin A:

v ^3 ' v '

- 1+^cos A:~cosh x log(l-f x)
3.

tan ( -=-

( >-

7. (2jc tan x n sec x), (A: -> n/2).

j_
8 . (cot *)

log x
, u -> o). 9.

a*

10.

13. (cos ax) , (x -> 0).

14.

15.

16. (2-O ^ 2a
', (*->). (B.V.1953)

\w Ct S

17.
(

sin2^
sec2

_ _

20. (sec x)
cot x

, (x -> n/2). 21. (2-x)
tan ff^

, (x^- 1).
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a t5>*', (,+,). u

'*, ..

26.

(fl.tf. Hons. 1959)

[For solutions of Ex. 25 and Ex. 26 by Infinite series refer 9-5, p. 185 ]

logsec ijc
cos *

sect*_
(

28. * !+- ,(*-> co)

a

31. Evaluate

sinxi
lim

32. If

/(0)=0,

show that tho derivative of every order of/(x) vanishes for x=0, /.<?.,

/
n
(0)=0,foralln.

33, Discuss the continuity of f(x) at the origin when

/(*)=* log sin x for x^O and/(0) =0.

(D.U. Hons. 1955)



CHAPTER IX

TAYLOR'S INFINITE SERIES

EXPANSIONS OF FUNCTIONS

9-1. Infinite Series. Its convergence and stun.

Let

be an infinite set of numbers given according to some law. Then a

symbol of the form

is called an infinite series. Here each term is followed by another so

that there is no last term.

If we add the first two terms of this infinite series, and then
add the sum so obtained to the third, and thus go on adding each
term to the sum of the previous term, we see that, as there is no
last term of the series, we will never arrive at the end of this process.
In the case of a finite series, however, this process of addition will be

completed at some stage, howsoever large a number of terms the series

may consist of.

Thus, in the ordinary sense, the expression 'Sum of an infinite

series', has no meaning. A meaning is assigned to this expression by
employing the notion of limit in the manner we now describe.

Let Sn denote the sum of the first n terms of the series so that

Sn is a function of the positive integral variable n. If Sn tends to a

finite limit S, as n tends to infinity, then the series is said to be comer-

gent and S is said to be its sum.

In case, Sn does not tend to a finite limit, we say that the series

does not converge.

The question of the sum of a non-convergent series does not

arise.

We may find an approximate value of the sum of a convergent
infinite series by adding a sufficiently large number of its terms.

Illustrations. Consider the infinite geometric series

l+r+r*+r*+ ......

We know that

1 r*
#n ,=-

JL *f

Sn=n when

179
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We have now to examine lim Sn when n -> oo .

[Refer 3-61, p. 57].

For r=l, Sn=n which tends to oo .

For
k
r

|
< 1, lim r"=0, so that lim Sn=l/(l-r).

For r> 1, lim r
w=oo and, therefore, lim Sn=oo .

For r^ 1, lim r
n
and, therefore, lim Sn does not exist.

Hence, we see that the infinite geometric series converges if and

only if \
r

\
< 1, and the sum of the infinite series then, is 1/(1 r).

9 2." Taylor's infinite series. We suppose that a given function

f(x) possesses derivatives of every order in an interval [a, a+h].

Then, however large a positive integer n may be, there exists a

number 0, lying between and 1, such that

f(a+h)=f(a)+hf'(a)+
H

*^
where R =^ n

(Taylor's development with Lagrange's form of remainder.)

We write

so that

Suppose that Rn -> 0, as n -> ao . It is then clear that

lim Sn=f(a+h),

so that we see that the series

f(a)+hf'(a)+ *",

converges and that its sum is equal to /(

Thus we have proved that

(0 (/*/(*) possesses derivatives of every order in the interval

[a, a+H] and

(ii) the remainder

tends to as n tends to infinity, then
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This is known as Taylor's theorem for the development of

j(a+h) in an infinite series of ascending integral powers of h, i.e.,

power series in h.

The series (1) is known as Taylor's series.

9'3. Maclaurin's infinite series. Putting for a and x for h in
the Taylor's infinite series, we see that if

(0 /(*) possesses derivatives of every order in the interval [0, x]
and

(ii) the remainder

tends to as n tends to infinity, then

This is known as Maclaurin's theorem for the development or

expansion of/vx) in an infinite series of ascending integral powers of

x, i.e., power series in x.

The series (2) is known as Maclaurin's series.

Note. It may be seen that instead of considering Lagrange's form of

remainder, we may as well consider Cauchy's form.

9-4. Formal expansion of functions. We have seen that in order

to find out if any given function can be expanded as an infinite

Taylor and Maclaurin series it is necessary to examine the behaviour

of Rn as n tends to infinity. To put down Rn ,
we require to obtain

the general expression for the nth derivative of the function, so that

we fail to apply Taylor's or Maclaurin's theorem to expand in a

power series a function for which a general expression for the nth

derivative cannot be determined Other more powerful methods

have, accordingly, been discovered to obtain such expansions when-

ever they are possible. But to deal with these methods is not within

the scope of this book.

Formal expansion of a function as a power series may, however,

be obtained by assuming that it can be so expanded, i.e., Rn does

tend to as n tends to infinity. Thus we have the result :

Iff(x) can be expanded as an infinite Maclaurin's series, then

/(*)=/(0)+*/'(0)+
**,

/*(<))+ ...... ...(1)

Such an investigation will not give any information as to the

range of values of x for which the expansion is valid.

To obtain the expansion of a function, on the assumption that

it is possible, we have only to calculate the values of its derivatives

for x=0 and substitute them in (1).
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In the Appendix, we shall obtain the expansions of

e, sin x, cos x, log (1+x). (l+x)
m

without assuming the possibility of expansion by actually examining
the behaviour of Rn for the functions,

In the following, however, we obtain these and other expansions
by assuming the possibility of expansion.

9-41. Expansion of e*.

Let

Thus

Substituting in the Maclaurin's series, we obtain

-v-3 -v

which is known as Exponential Series.

Cor. 1. Changing x into x log a in (1), we get

a ,= e
* log *= 1+(x log a) +

This result may also be obtained directly by employing Maclau-
rin's series.

Cor 2. Putting, 1 for x, we obtain

.LI \ JL L.4.
L !

+ 2! + ~3!
+

~4!
+ '"

from which we may obtain the values of, e, upto any number of
decimal places.

9-42. Expansion of sin x.

Let

/(*):=: sin x
mr

Thus

/-(0)-sin -*

1, AOJ^O,/^)^-!, /-'(0)-0, etc.,

so that we see that the values of/n
(0) for different values of n form

a successively appearing periodic cycle of four values

1,0, -1,0,
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Making these substitutions in the Maclaurin's series, we obtain
ths sine series.

sin *=*-__
9-43. We may similarly obtain the cosine series :

x2 x l x2n
cos *=:!-_ +_-_ ......+ (-!)

9-44, Expansion of log (1 +x).

Let

Thus

.\/'(0)= l,/"(0)=-l ; /'''(0)==2 !,/""(0)= -3 land so on.

Making substitutions in the Maclaurin's seriep, wo obtain the

Logarithmic Series :

log (i+x)=.x-^+-^+ ...... + (-i)"-i. + ..... .

9 45. Expansion of (1 +x)
OT

.

Let

Thus

Making substitutions, we obtain^the Binomial Seriesj

2f
......

n\

In case m is a positive integer, we obtain a finite series on the

right.

Note 1. If we examine the behaviour of Rn , as is done in the Appendix,
we can show that (i) the Exponential, sine and cosine series are valid for every
value x, (ii) the Logarithmic Series is valid for Kx<J, and (in) the Binomial

Series is validfor

Note 2. In the following we shall consider some more cases of expan-
sions of functions, in each case assuming the possibility of expansion. It will

be seen that in some cases we may also obtain the expansion by vsing any of
the series obtained above.
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Examples

1. Assuming the possibility of expansion, expand, tan x, as far
as the term inx*.

Lot

/(x)=tan x.

/. /'(x)=sec
2x=l+tan2x.

/"(x)=2 tan x sec2x

=2 tan x(l+tan
2
x)

= 2 tan x+2 tan3 x.

/'"(x)=2 sec2x+6 tan2x sec2*

=2 (l+tanx)+6 tan2x (l+tan
2
x)

=2+8tan2x+6 tan4x.

/ ;

'"(x)
= 16 tan x sec2x+24 tan3x sec2*
= 16 tan x

(
1 +tan2

x) -f 24 tan3
x( 1 +tan2

x)

= 16 tan x -f40 tan3x+24 tan5x.

/ v
(jc)
= 16 sec2x+ 120 tan2x sec2x+ 120 tan4x sec2x.

Thus

Substituting these values in the Maciaurin's series 9*4, we
obtain

anx-x+ x + x +

2. Assuming the possibility ofexpansion, expand /(x) e
m sm x

in ascending integral powers of x.

In Ex. 1, 5-6, p. 124 we proved that

I

(w2
(2

2+w2
)(4

2+w2
) [( 2)

2 -fw2
] ;

n even

(m (!
2+m2

)(3
2+m2

) [(w-2)
2+m2

] ;
w odd.

Substituting these values in the Maciaurin's series, we get

m2
2 w(l

2 -fw2
) 8

m2
(2

2+m2
)

i

2i \ o ! 4 !

3. Use of known series. By Maciaurin's theorem or otherwise

find the expansion of
sin (e*-l),

upto and including the term in x4
.

First four derivatives are neaded to expand the given function

by Maciaurin's theorem upto the term required.

The required expansion can also be obtained by employing the

Exponential and the sine series and thus avoiding the process of cal-

culating the derivatives which is often very inconvenient.
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=z, say.

Now, sin (e
x

l)=sinz

z
,
z5

O I O I

v*2 "vS "v4

2T
+

3~"T
+
4l
+

9*5. Use of infinite series for evaluating the limits of indeter-

minate form?. The following examples will illustrate the procedure.

Examples

1. find Urn ?*?
*-*-**

(D.U.1953)

Using the infinite series for e
x

, sin x and log (I .v), we obtain

e" sin x x .x
2

= lim

=lim

=lim
-i-i

2. Eh

(0

(//) lira L
1 x

)
1 'I

-_e ie:v. (D.U. Hons. 1954)
x->0 x

(Cf. Ex. 25, Ex. 26, p. 178)
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Let y=(i+X)

l lx

log 7= log(l+x)

or

2 o
(T>

L '6 t o

a
a i as

Q 1^ O
-e.e. 2 3

2 24

IX . JL i ./V \

^ +-STV- e

2
'

/ , x . llx5

e
( 2

+ "24

""
24

'

Exercises

(/w f/w following , //re possibility of expansion may also be assumed)

1. Prove that

w !
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2. Prove that

e a* sin bx=bx+abx*+-
3 b

3
-~- *+....

3. Obtain the wth term in the expansion of tan" 1 x in ascending powers
of*. (P.U.1951)

4. Show that cos 2 x=*l-x2

+$x*-^\x ......

5. Prove that ex sin2 *= *2
-f *3

-f Jx
4 ____

6. If >>=log [x+ >!(!+ x
2
)], prove that

Differentiate this n times and deduce the expansion of y in ascending
powers of x in the form

1 x3
1 3 x5

1 3 5 x7
,

yss*~ T* 3
+ T-' 4

'

~5~~ ~2~' 4
'

6
'

7
'+ ' ' ' '

(P.C/. 7P57)

7. If >>=sin log (;c
2
-}-2x-M), prove that

Hence or otherwipe expand .v in ascending powers of x as far as

8. Prove that

.
,

9. Show that

2) , ,

m2(m
2

8)

10. Obtain the following expressions :

(/) log tan (i"fx)=Zx+*x3
-f -JxH ----

(l + sin

4 ,

1 x2
I x4

,1+ T~
* 2T~ 30"

' 47

... . tan A: ^c
2 7 .

,

(iv) log
^ =-^

' +
"90"

xM"" '

, . X __. X 1 A'
2

1 X*
(v) e.^!-

1
2"+fi

'

2!
-

30
""

4"!
+ *"-

i ,1 ^8
l 3 x5

.

(v/) sm-^^xl y '

3 --f-2^- 4 "5
-+

(vi7) log sec *=2>
2+

12 ^+45 x%+"- (D.V.1953}
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(v//7) log sin (x+/i)=log sin x+ h cot *--yT cosec2 x

/i
8

+JY . 2 cot x cosec
8x- ----

(/AT) tan-Ms+AJ-tan-^+Asinz --~? -(A sin z)
1 --

1

^
2*

.,
. v.sin3z

4-(Asmz)
8

3
-- ...

when zcofr^x.

11. Obtain the expansion of e
sm X

in powers of x as far as x4
.

(D.I/.

12. Obtain the first three terms of the expansion of log (1-Manx) in

Powersoft (P.U. 1955)

13. App]y Maclaurin's theorem to find the expansion of ex l(e
x+ 1) as far

as the term in x8
. (D.U. 1955)

14. Expand log sin x in powers of U-3).
[Write log sin x=log sin (3+x-3) and replace x by 3 and A by x~3 in

the expansion of log sin \x+h) in powers of h.]

15. Expand 3x3-2x2 4-x-4 in powers of x-2.

16. Show that

* sin x

(/) Uin *-55=;
. (//) lim "-. =1.

~ ^3 ^ x-smx

^
x->0 *3 16

17. Obtain by Maclaurin's theorem, the first four terms of the expan-

sion of e
X S x

in ascending powers of x. Hence or otherwise show that

_ xcosx
lim ~-A-

7
-- =3.

x-0 x smx

Appendix

We shall now obtain the expansions of

e*, sin x, cos x, log (1+x), (l + x)
m

without making any assumption as to the possibility of expansion,

Expansion of er .

Let /(*)=*. Therefore,fn
(x)= ex

,
so that/(x) possesses deri-

vatives of every order for every value of x.

.. Taking Lagrange's form of remainder, we have

V!
'

We know that when -> oo ,

x//i ! -> (See 3*62, p. 58)

whatever value x may have.
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Rn -> as n ->oo .

Conditions for Maclaurin's infinite expansion are thus satisfied.

Also /(0)=e=l
Making substitutions in the Maclaurin's series, we get

v-2 y3 v-n

--l+*+ 2! + 3,
+ +-;,-!+"

which is valid for every value of x.

Expansion of sin x.

Let f(x)= sin x. .-. f n
(x)=sm (x+ ^nn),

so that/(x) possesses derivatives of every order for every value of jc.

We have

Since
*

x"

n\

we see that Rn -> as n -> oo for every value^of x.

Thus the conditions for Maclaurin's infinite expansion are

satisfied. Now

/"(0)=sin
n*

.

Making these substitutions in the Maclaurin's series, we get

sinx=x
f -j-

_ * ,- + ....

which is valid for every value of x.

Expansion of cos x. As above, it may easily be shown that

_i x2 x4 x6

cos x
2 j- +-4 ? 6 j

+

for every value of x.

Expansion of log (1+x).

Let

We know that log (1+*) possesses derivatives of every order for

(l+x)>0, i.e., for x>~l.
Moreover
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If Rn , denotes Lagrange's form of remainder, we have

(i) Let < x <;i, so that x/(l+0.x) and, therefore, also,

[xl(l+ (tx)]
n

is positive and <1, whatever value n may have.

Since, also, 1/n -^ 0, as n -> oo , we see that Rn -> 0.

Thus
/?n -> as H -> oo when 0^x<J 1.

(ii) Let 1<JC<0.

In this case x/(l+fix) may not be numerically less than unity
so thafc we fail to draw any definite conclusion from Lagrange's form

.

Taking Cauchy's form of remainder, we have

Here (1 0)/( !+ #*). is positive and less than 1, and
v

r i_

Also

xn -> as n -+ co .
( 3'61, p. 57)

Rn -> as n -> oo .

Hence, the conditions for Maclaurin's theorem are satisfied for

Also

Making these substitutions in the Maclaurin's series, we get
<v2 v3 x*_ .^ . A. A: ./> .

log (l+x)=x- -2+-$
--

~T~+ ----

for !<*<!.

Expansion of (l+x)
m

; (m is any real number).
Let

/w=(i +*r-
Whenm is any real number, (l+x)

w
possesses continuous deri-

vatives of every order only when l+ x>0, /.^., when x> 1.

Now,

f(x)=m(m-l)(m-2) ......(m-n+l)(l+x)
m~.

We notice that if m is any positive integer, then the derivatives
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otf(x) of order higher than mth vanish identically and thus, for

n > w, Rn identically vanishes, so that (l+x)
m

is expanded in a
finite series consisting of (m+l) terms.

Ifwbe not a positive integer, then no derivative vanishes

identically so that we have to examine this case still further.

If Rn denotes Cauchy's form of remainder, we get

Let

1 < x < 1, i.e.,
|

x
|
< 1.

Also

0<0< 1.

< 1- < l+Ox,

or < (
~

t;-} < 1,

0<
Let (m 1) be positive.

Now
< l+9x <

Let, now, ml be negative.

Now, since

x

I

x
I ,

or

(l +fl*)-l^(l_ \

X
\ )-!.

*Also we know that

m(m l)...(w w+1) ^ , , , ,_J--
/ "ZTiri

- 1 ^ ""* when
I

x
I
< 1 -

Thus, Hn ~> as n -> oo when
|

x
\
< 1.

The conditions for Maclaurin's expansion are, therefore, satis-

fied. Now
/(0)=w(w-l) ......(w-n

Aefer to the foot note on the next page.
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Making substitutions, we get

,+ , xm t , , m(m--l) ft , m(m l)(m2) , ,

(l+x)*=l+mxH L__/xa+ -v - '>-7x3
-f ...

JL 3

when 1 < A: < 1.

Ex. 1. Justify the Maclaurin's expansions of

eax sin bx 9 eax cos bx, tan" 1 x.

Ex, 2. Show that log x and cot x cannot be expanded as Maclaurin's
series.

Ex. 3. Show that the Maclaurin's infinite expansion is not valid for

f(x) where

e~ when x^O and /(0)=0.

[Refer Ex. 32. p. 178.]

*To prove that when
\
x \ < 1,

1) ____ (w "^

Changing n to w-f 1, we get

or x as n >oo.

As
|
x

|
< 1, we can find a positive number k < 1, and a positive integer

p such that x < k, for > />. Thus
Wn !

K *
I
W

2 I
< k

I

I n

Multiplying we get

Now
| up | //c^ is a constant and k* -> as n -> oo.

|
n

|
and so also Un

'

-> as w -> oo.



CHAPTER X

FUNCTIONS OF TWO VARIABLES

PARTIAL DIFFERENTIATION

10*1. The notions of continuity, limit and differentiation in

relation to functions of two variables, will be briefly explained in

this chapter. A few theorems of elementary character will also be

proved.

The subject of functions of two variables is capable of exten-

sion to functions of n variables, but the treatment of the subject in

this generalised form is not within the scope of this book. Only a
few examples dealing with functions of three or more variables may
be given.

102. Functions of two variables. As in the case of functions

of a single variable, we introduce the notion of functions of two
variables by considering some examples.

(/) The relation

between x, y, z, determines a value of z corresponding to every pair
of numbers x, y, which are such that x2 +

iy
2
^l.

Denoting a pair of numbers x, y, geometrically by a point on
a plane as explained in 1-7, p. 14, we see that the points (#, y) for

which X2
+J>

2<1 lie on or within the circle whose centre is at the

origin and radius is 1.

The region determined by the point (.x, y) is called the domain
of the point (x, y).

Now, we say that the relation (1) determines z as a function of

two variables, x
9 y defined for the domain bounded by the unit circle

>=!.

(/) Consider the relation

where a<b ; c<d.
Now (a x)(x b) is non-negative if a^x^b and (cy)(yd)

is non-negative if ct^y^d.
The points (x, y) for which a^x^b, c^yt^d determine a

rectangular domain bounded by the lines

x=a
y
x=b

; y=c,y=d.
The relation (2) determines a value of z corresponding to every

point (x, y) of this rectangular domain. Thus z is a function of x
and y defined for the domain.

193
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(ill) The relation

r2 V2

z=e x y
,

determines z as a function of x, y defined for the whole plane.

In general, we say that z is a function of two variables defined
for a certain domain, if it has a value corresponding to every point (x y y)

of the domain.

The relation of functionality is expressed by the symbols /, ?

etc., as in the case of functions of a single variable, so that we may
write z=f(x,y), </(*, y), etc.

Ex. Determine the domains of definition of

10-3. Neighbourhood of a point (a, b). Let 8 be any positive
number. The points (x, y) such that

determine a square bounded by the lines

x=a S, x = a+8 ; y=^b~8, y

Its centre is at the point (a, b). This square is called a neighbour-
hood of the point (a, b). For every value of, S, we will get a neigh-
bourhood.

10*4. Continuity of a function of two variables.

Let (a, b) be any point of the domain of definition of

As in tho case of functions of one variable, we say that f(x, y)
is continuous at (a, b), if for points (x, y) near (a, b), the value

f(x > y) of the function is near f(a, b) i.e., f(x, y) can be made as

near f(a> b) as we like by taking the points (x, y) sufficiently near

(a. b).

Formally, we say that /(A: , y) is continuous at (a, b), if, corres-

ponding to any pre-assigned positive number e, there exists a positive
number 8 such that

I f(*> y)-f(a >
b

) I
< e

1 for all points (x, y) in the square

P(a,b) Thus for continuity at (a, b), there

exists a square bounded by the lines

x=a 8, x=fl+S; y^b 8, y=b+8
such that, for any point (x, y) of this

square, /(x, y) lies between

f(a, fc)-e,

p. j.
where e is any positive number, however
small.
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10 41. Continuity in a domain. A j"unction f(x, y) is said to be

continuous in a domain if it is continuous at every point of the same.

10-42. Special Case. Let /(.x, y) be continuous at (a, b) and
let e be any positive number, however small. Then there exists a

square bounded by the lines

x-=a8, x = a-\-8 ;>'= S, >'
= /

such that for points (x, y) of the square, the numerical value of the

difference between f(x, y) and f(a, b) is less than e.

In particular, if we consider points of this square lying on the

line y=b, we see that for values of x lying between a 8 and a+ 8,

the numerical value of the difference between f(x t b) and f(a, b) is less

than e. Also, such a choice of S is possible for every positive number
. This is equivalent to saying that f(X, b) is a continuous function

of a single variable x for x-a.

It may be similarly shown that f(a, y) is a continuous function

ofy for y= b.

Thus we have shown that a continuousfunction of two variables

is also a continuous function of each variable separately.

10 5. Limit of a function of two variables.

lim/(x, y)= l, as (x, y) -> (a y b).

A function f(x, y) is said to tend to the limit /, as x tends to a

andy tends to b, i.e
,
as (x, y) tends to (a, ft), //, corresponding to any

pre-assigned positive number z, there exists a positive number 8 such

that

\f(X,y)-l\ <

for all points (x, y), other than (a, 6), lying within the square,

This means that corresponding to every positive number e,

there exists a neighbourhood such that for every point (x, y) of this

neighbourhood ,
other than f(a, b),f(x, y) lies between / e and /+e.

10-51. Limit of a continuous function. Comparing the defini-

tions of limit and continuity as given in 104, and 10'5, we see

that/(x, y) is continuous at (a, 6), if and only if

limf(x, y)=f(a, b) as (x, y) -> (a, b),

ie.,

the limit of the function^ actual value of the function.

The same thing may also be expressed by saying that for conti-

nuity at (a, 6), we have

as (0,0).
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10-6. Partial derivatives.

Let

*=/(*> J>).

Then

if it exists, is said to be the partial derivatives of f(x, y) w.r.t. x at

(a, b) and is denoted by

3z
f_

3z
\ or f.(a, b).

V 8x /(a, b)
A '

It will be seen that to find the partial derivative of/(x, y) w.r.t.

x at (a, b), we put j equal to b and consider the change in th&
function as x changes from a to a -\-h so that

/(*, b)

is the ordinary derivative off(x, b) w.r. to xfor x=a.

Again,

if it exists, is called the partial derivative off(x, y) w.r. to y at (a, b),

and is denoted by

15 the ordinary derivative off(a, y) w.r. to y for y=b.

Iff(x, y) possesses a partial derivative w.r. to x at every point
of its domain of definition, then the values of these partial derivatives

themselves define a function of two variables for the same domain.
This function is called the partial derivative of the function w.r. to x
and is denoted by gz/gx or fx(x, y) or simply fx .

Thus

fix v]-\imf(X+h
' y)

-
f(X ' y) as/z-^0

<* Jx\x> ") lim --------

f,

----------- as AI -> u,

where y is kept constant in the process of taking the limit. We can

similarly define the partial derivative of/, w.r. toy which is denoted

by gz/8^, f*(x, y) or fy.

10 61. Partial derivatives of higher orders. We can form partial
derivatives of 3z/gx and dzjfty just as we formed those of z.
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Thus we have

which are called the second order partial derivatives of z and are
denoted by

Z oZ f 9 f
Y> or v, lvx

respectively.

Similarly the second order partial derivatives

aj \dy
-are respectively denoted by

Thus, there are four second order partial derivatives of z at

*tny point (a, b).

Ths partial d3rivatives 3
2
z/g>> 3* and 3

2
z/dx $y are distinguished

by the ordzr in which z is successively differantiated w.r. to x and

y. But, it will be sesn that, in general, they are equal. The proof
is given in the Appendix.

10 7. Geometrical representation or function of two variables.

We take a pair of perpendicular lines OX and OY. Through the

point 0, we draw a line Z'OZ perpendicular to the XY plane and
oall it Z-axis.

Any one of the two sides of Z-axis may be assigned a positive
sense. Lengths, z, will be measured parallel to this axis.

The three co-ordinate axes, taken in pairs
determine three planes, viz

, XY, YZ and ZX
which are taken as the co-ordinate planes.

Let z --/(#, y) be a function defined in any
domain lying in the XY plane,

To each point (x, y) of this domain, there

corresponds a value of z. Through this point,
we draw the line perpendicular to XY plane

qual in length to z, so that we arrive at another

point P denoted as (x, y, z), lying on one or the

other side of the plane according as z in positive
or negative. Fig . 55

Thus to each point of the domain in the XY plane there corres-

ponds a point P. The aggregate of the points P determines a surface

which is said to represent the function geometrically.
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10 71. Geometrical interpretation of partial derivatives of the
first order.

Let

z=f(x 9 y). ...(/>

We have seen that the functional equation (/) represents a surface
geometrically . We now seek the geometrical interpretation of the

partial derivatives

The point P[a, b. f(a, b)] on the surface*

corresponds to the values #, b of the indepen-

dent variables x, y.

If a variable point, starting from Pr

A changes its position on the surface such that y
remains constantly equal 1o b

y
then it is clear

that the locus of the point is the curve of inter-

section of the surface and the plane y=b.
Fig. 56

On this curve x and z vary according to the relation

*=/(*,*).

(C5

T
--

)
is the ordinary derivative of/(x, b) w.r. to x for

3* Aa> &)

x=a.

Hence, we see that
(

--

)
is the tangent of the angle which

\OX J(a> 6)

the tangent to the curve, in which the plane y= b parallel to the ZX
plane cuts the surface at P[a, bj(a, b)], makes with X-axis.

/ )T V

Similarly, it may be seen that
(

-

)
is the tangent of the-

^ oy /(a > ft)

angle which the tangent to the curve of intersection of the surface and
the plane x=a makes with Y-axis.

10-8. Homogeneous Functions. Ordinarily, /(x, y) is said to be

a homogeneous function of order n. if the degree of each of its terms

in x and y is equal to n. Thus

is a homogeneous function of order n.

This definition of homogeneity applies to polynomial functions

only. To enlarge the concept of homogeneity so as to bring even

transcendental functions within its scope, we say that z is a homoge-
neousfunction of order or degree n, if it is expressible as

xf(ylx).
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The polynomial function (/) which can be written as

is a homogeneous function of order n according to the new definition

also. The functions

are homogeneous according to the second definition only. Here the

degree of xn sin (yjx) is n. Also

1+
L

' * J

so that it is of degree J.

10 81. Euler's theorem on Homogeneous Functions.

7/z be a homogeneousfunction of.x, y of order n, then

x

We have

Thus

Cor. // z y a homogeneous function of x, y of degree n,

Differentiating
/^"r ^T

?-! -i, ...(i)
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partially with respect to x and y separately, we obtain

d
zz 32

9*'
'" ( '

8z

Multiplying (2), (3) by x, y respectively and adding, we obtain

8
*

where we have employed (1) and assumed the equality of
and

Examples

I- //

2 -1 ^ _ 2 f -1
*

v v '

^v y

prove that

_9
2" = x

l~y\
-

(D.t/. /955; P.f/.)
3x3^ x2

+>'
2 v 7

Wa have

rtA l---- 2v tan-1

-1

_

dxdy

*

= 1-

2. //
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show that

-i^ _|_

9
"-+

3
a"^ - (D.U. 1952

;
P.U. 1949)

We have

Similarly or by symmetry

3
2w

,---=: f J

Adding, we obtain the result as given.

3. //

prove that

. ft=sm 2u.
d* dy

Here u is not a homogeneous function. We, however, write

z=tan u= -

xy l(ylx)
'

so that z is a homogeneous function of x, y of order 2.

>? %7

...(i)
dy

But

'
--*- -<

Substituting in (1), we obtain

sec2w - )=2z=2 tan w,
d* J

3w
,

3w 2 sin w 9x
ax
+y W~ cos

cos M=
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Exercises

1. Find the first order partial derivatives of

(/) tanr l
(x+y). (//) e ax sin by.

(Hi) logU
2
-j->>

2

).

2. Find the second order partial derivatives of

/ X V / . . r^

3. Verify that

a
2
//

a*a>

when u is

(/) sin- 1 - /;;x Xy

y

(Hi) log (y sin x+x sin y

4. Find the value of

1

a2

when

5. Verify Euler's theorem for

liii) z^sin- 1
x- + taxri-

y
-

. (iv) z=jc log ~.
y x *

(v) 2=
rj7l'

6. If u=f(yjx), show that

*!"_ +J 8_ =0 . (D.[/. 7950 ; P.U. 1954)

1. If z=xyf(x/y) t show that

dz . dZ - ip rj \
x~~^ -j-^-r. =2z. ^.L/./

8. If z=-tan (y+ax)+(y-ax)'* , find the value of

J!^ ^J!?. . (P.U. 1945)

>. If r=tapr 1

(y/x), verify that

1-^-4-1^ -0, (AC/.)
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r
10. If z(x+y)=x

2
y

2
, show that

*LV = 4 ( 1 - az- - 9Z- \ (AlhLatcd)
3y J \* dx dy J

11. lfz=3xy-ya
-\-(y

t
-2x)

1i
, verify that

11 Tr i
. A , ,12. If w=log -^, prove that ^

^-
+ 7 =1.

13. ( fl ) If w-sin-1 ^2

, show that A:
3w

4 y ^ =tan w. (P.t/. 1954)
x -f >>

' * 9x^9^

(A) If w-sia- 1 ^^"^ show that
^x+->!y

m (P.U. 7955).=
m

/ 3A:
^^

9y

14. If z=f(x -I ay)-\-<f>(x ay), prove that

a
a*

2
'

15. ltz= (x-{-y) + (x+y)<9(ylx), prove that

/9 2z _9 2z\ ^^^
V9^2

9y9^y
*

\9y2

16. If w=/(cix
2
-f 2/7^+^ 2

), v-^(^ 2
-f-2/?xy-h^

2
), prove that

V, .Jr.V f -f\ (M.r.)
9^ V 9^ x 9* V 9^ x

17. If 9=t
n e~ r2/4/

, find the value of n which will make
i .dY^ao^^ao (M . r<)
r
2

9r V 8r / 9^

18. If -=/(r) where r= VU2
-f j/

2
), prove that

&+C;-^m
19. If =log UHy-hz2

), prove that

f a
2

_ = 9
2w

3>az 9zax dxdy'

20. If K=rm where r
2=x2

-Fy
2 + z2

, show that

21 . If w= tan- 1 - y-
, find

[Refer Ex. 3, p. 201]
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Differentiating (2), w.r. to x and y, we get

~ 2 A w w
,

2 sec2 w tan ^
- ^sec

2w
9;> 9*

2*
<> 2 * /0 Y , 2 8*

-= =2 sec2 w tan w (
-~

} +sec2

;^.
?
2 \9^ / a^

2

As z is a homogeneous function of jc, y of order 2, we have, by Cor. 10*81

P. 199.

Making substitution, we obtain

Using (3) p. 201, we obtain

/^ ]=2
tan -2 sec* tan . sin

2
2u.

22. If

w~sin~

show that

10 82. Choice of independent variables. A new Notation. To

introduce the new notation, we consider a particular case. Suppose
that

x=r cos 6, y=r sin 6 ;
. . (0

a<jid
we are required to find 9x/9r.

Before beginning partial differentiation, we have to ask our-

selves a question. "What are the independent variables ?" Hitherto

the notation has always been such as to suggest readily what the

independent variables are and no ambiguity was possible.

In the present case we have four variables x, y, r, connected

by two relations so that any one of them may be expressed in terms
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of two of the remaining three. Thus, x may be expressed in terms of

(a) r, e ;
or (b) r, y ;

or (c) 0, y.

In case (c), 3.x/9r has no meaning. In cases (a) and (&), where

9x/gr has a meaning there is no reason to suppose that the two values
of (9x/3r) as determined from them, where we regard and>> con-

stants respectively, are equal. Some modification of the notation is

therefore necessary to distinguish between these two values.

For the sake of distinction, these two values are respectively
denoted as

-i. rax

J0, Ldr

Thus means the partial derivative of x w. r. to r when
L 0? Jv

r, are the independent variables.

From x r cos
,
we have

To find .we have to express x in terms of r and y.
Ldrjy

From (/), we obtain

r2=x2+yz so that x= \?(r
z
-y*).

Ex. 1. If * rcos 5, >'=' sin 9, find the values of

*! r
8*! r^-i r

9x
i r^

fl >' L ar Je' L'w V L a<- Jfl
1

L'w
(P.t/. 1938)

Ex. 2. v is the volume, s the curved surface, h, the height and r the
radius of the circular base of a right circular cylinder, show that

Ex. 3. Explain the meanings of the partial differential co-efficients
and ar/Jx where x, y are the rectangular cartesian co-ordinates of a point and
r, are its polar co-ordinates. Prove that
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Ex. 4. Prove that

) 0*(logr) 1

to -&r
- ~

8/
- -

-Fcos 2 >

\vhere

x=rco5 0, yr sin 0.

10-9. For the following developments, it will be assumed that

f(x > y) possesses continuous partial derivative w. r. to x and y in the

domain of definition of the function.

10 91. Theorem on Total Differentials. We consider a func-

tion

z=f(*, y)- ..(')

Let (x, y), (x-\-8x. y+8y) be any two points so that Sx t 8y are

the changes in tlie independent vnriablcs x B,ruly. Lst Sz be the

consequent change in z.

We have

z+Zz=f(x \-Sx,y+8y). ...(//)

From (/) and (//'),
we get

t-ix,y)~f(x y)] ...(Hi)

so that we have subtracted and added

Here the change Sz has been cxpresse 1 as the sum of two

differences, to eaoh of which we shall apply Lag range's mean v.ilue

theorem.

We regard f(x-\-8x, y) as a function of y only ;
x \-x being

supposed constant, so that by the mean valu? theorem,

We write

fy(x+&x, y+OW-f^x, ^}= e
a ...(/v)

so that e2 depends on $x, Sy, aid because of the assumed continuity

offy(x t y) tends to zero as x and Sy both tend to 0.

Again we regard f(x, y) as a function of x only, y feeing sup-

*posed constant, so that by the mean value theorem, we have

f(x+8x, y)-f(x, y)=Sxft(x \-Ojx, y).

We write

Ux+ OJx.yl-Ux.y),**! ...(v)

tso

that s, depends upon 8x and, because of the assumed ontinuity
offx(xt y), tends to as 8x tends to 0.
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Prom (i/7), (iv), (v), we get

, y)+Byfv (x,

V----A----; v---y---;

Thus the change Sz in r consists of two points as marked. Of
these the first is called the differential of z and is denoted by dz.

Thus

dz=^~8x+ 9
-S>>. ...(v/)

dx dy
v

Let

z= x

so that

dx=dz=l . 8x^8x.

Similarly, by taking z=y, we show that

8y=dy.

Thus (v/) takes the form

dz=-^dx + a/
dy.

ax
n

ay

It should be carefully noted that the differentials dx and dy of
the independent variables x and y are the actual changes 8x and &y, but

the differential dz of the dependent variable z is not the same as the

change Sz
;

it being the principal part of the increment Sz.

Cor. Approximate Calculations. From above we see that the

approximate change dz in z corresponding to the small changes 8x and

&y in x, y is

dz
dx + 8r

</>>,

dx
^

2y

which has been denoted by dz.

Examples

1. Find the percentage error in the area of an ellipse when an

error of + 1 per cent, is made in measuring the major and minor axes.

If a, b, A denote semi-major axis, semi-minor axis and area of

an ellipse respectively, we have the relation

TT -- T

Here ._ =7rV̂ =7m .

dATrbda+Tradb.
Since we are given that

j a JL
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dA - -

Too+ ioo""loo
'

Therefore the percentage of error in A= 2.

2, The sides of an acute-angled triangle are measured. Prove
that the increment in A due to small increments in a, b

y
c is given by the

equation

be . sin A . S/l=a(cos CS&-f cos J3&c$a).

Supposing that the limits of error in the length of any side are
M per cent, where p is small, prove that the limits of error in A are

approximately

1 5(fjLa
2
jbc sin A

) degrees. (M. T. >

From elementary Trigonometry, we know that

2 cos A~ -
,

be

Here A is a function of three variables, a, b, c.

9 A A A 2b*c-c(b*+c*-a*)
.*. -2 sin A . dA=*~ --->-- ' -------- ' db

a*) , 2a
i ---------- --------' ^c~

b'c*

O A JA
2 2 222

or -2 sin ^ . <M=

2ab cos (7
,
2 c# cos

.-. be sin A . dA~ a(cos C . c/6+cos B . dcdd).

Tho limits of the errors d&, Jc, da are

&/i/100. c<*/100,

As the triangle is acute-angled, therefore cos JB, cos C are

positive. Therefore the limits of the error dA are

0(6 cos C+c cos ff-f a) ^ a( 6cos Cc cosj8a) M
6c sin"^ 'TOO' Bc"s5tt A

'

100

or

sin ^ *

100

u 180
'

100
'

IT

At
or ^ (

1 1 5
) .--A -, degrees approximately.t/c sin A.
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Exercises

1. Find the percentage error in calculating the area of a rectangle when
an error of 2 per cent is made in measuring its sides.

2. Show that the error in calculating the time period of a pendulum at

anyplace is zero if an error of +/* per cent be made in measuring its length
and gravity at the place.

3. In a triangle ABC, measurements are taken of the side c and angles
A, B and length a is calculated from these measurements. If Ac, A/4, A/*
are the small errors in these measurements, show that the error Atf in a is

given by

4. ABC. is an acute-angled triangle with fixed base EC. If Sb, Sc, 8A
and SB are small increments in 6, c, A and 5 respectively, the vertex A is given
a small displacement S* parallel to EC, prove that

(i) c8b+b8c+bc cot /I S/l-0. (//) cSB-hsin BSjt=0. (M.T.)

5. The area of a triangle whose sides are a, b, c is A. Prove that the
error corresponding to errors 8a, 8b, 8c in the sides is approximately given by

2A SA = S
2
8p - s8q- abcSs,

Avhere 2s=a+b+ c, 2/?=0
2
-f 6

2+ c
2
, 3?

6. The work that must be done to propel a ship of displacement D for a
distance s in time / is proportional to

rZ>f/ 2
.

Find approximately the percentage increase of work necessary when the dis-

placement is increased by 1%, the time diminished by 1%, and the distance

diminished by 3%.

7. The height // and the semi-vertical angle a of a cone are measured, and
from them A, the total area of the cone including the base, is calculated. If h

and a are in error by small quantities S/z and 8* respectively, find the corres-

ponding error in the area. Show further that if a=n/6, an error of -fl per cent

in h will be approximately compensated by an error of 0'33 degree in a.

(M.T.)

10*92. Composite functions.

Let

-=A*. y) ; 0")

and let

so that x, y are themselves functions of a third variable t.

The functional equations, (/), (//), (///) are said to define z as a

composite function of t.

Again, let x=^(ii f t>,), ...(h)

y^(u 9 v) ; ,..(*;)

so that x
t y are functions of the variables u, v. Here the functional

equations (i), (/v), (v) define zas a function of w, v, which is called

a composite function of u and v.
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10*93. Differentiation of composite functions.

Let

***f(x>y)*

possess continuous partial derivatives and

let *

possess continuous derivatives.

Then

Jz gz dx gz dy

dF
=

ax~
'

dt + 8y~
'

dt
'

'Let f, f-fSf be any two values. Let Sx, Sy, Sz be the change*
in x, y, z consequent to the change St in t . We have

, y+8y)-f(x, y)

+ [f(x,y+*y)-f(x, y)1
As in 10'91, p. 207, we apply Lagrange's mean value theorem

to the two differences on the right, and obtain

Let 8f->0 so that ?x and 8y-*Q.

Because of the continuity of partial derivatives, we have

Urn fJx+Ol Bx t y+Sy)=fj(x,y)=-&--,
( Sx, 8y)->(0, 0) W

lim fi

Hence, in the limit, (/) becomes

dz _ 9z dx 8z dy

dt
"~

9x
'

dt + 9y dt
' ' ' *' '

Cor 1. Let

z=/(^, y),

possess continuous first order partial derivatives w.r. to x, y.

Let

X=>(, ,),

y=$(u, v),

possess continuous first order partial derivatives.
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To obtain 3z/gw, we regard v as a constant so that x and y may
be supposed to be functions of u only. Then, by the above theorem,
we have

az az a* . a* ay

It may similarly be shown that

_az__ az ax a_z^ j?y

~av ~~ax
*

av ay
*

av"'

Examples
1. Find dzjdt when

z=xy2
+x*y, x=at2

, y

Verify by direct substitution.

Now

-. .

Substituting these values in (//), 10*93, p. 210, we get

*L = (yZ+2xy) 2at+(2xy+x*)2a

Again

~
Hence the verification.

2. z / a function ofx andy. Prove that if

then

We look upon z as a composite function of u, v.

.- .

8j>

'

9"

"
3V
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Subtracting, we get

du ~"av ^a

---.
9* 9>>

3. JfHf^yz, zx, xy) ; prove that,

^c ^ z

Let

u=y z, vzx, w=xy,
so that

H=f(u, v, w).

We have expressed H as a composite function of x, >>,
2.

'
'

9*

Similarly

__
'

'dy
'

9M' 3"

Adding, we get the result.

4. H is a homogeneous function of x, y, z of ordern
; prove

th(it v

[This is Euler's theorem for a homogeneous function of three

independent variables.] We have

H=xnf f
,

|j=x/\w,
v) where yjx-u, z

(

'x=v.
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But

8w = - JL ?
v _ z

a*
~~

;c*~
>

a*
^

~~;ca
'

Hence

= njt-'/(, v)
~ x*

-

( v
8

+z
8-

0*
'/V ' '

V '9W 0V /

Again

dH^xnfdf 8", ?/ ?
v >

a^ \8
'

8.y
+

8v~
'

aj/

Similarly

?/, for
8B 1

. -3J!..o.
aw a>> A; ay

3-

10*94. Implicit functions. Let /(jc, _y) be any function of

two variables. Ordinarily, we say that, since on solving the equation

f(x, y)=o ...(0

we can obtain y as a function of x, the equation (/) defines y as

an implicit function of x.

There arises a theoretical difficulty here. Without investigation
we cannot say that corresponding to each value of A', the equation (/)

must determine one and only one value of y so that the equation (/)

always determines, y, as a function of x and in fact, this is not the

case, in general. The investigation of the conditions under which
the equation (/) does define y as a function of x is not, however,
within the scope of this book.

Assuming that the conditions under which the equation (/) de-

fines y as a derivable function of x are satisfied, we shall now obtain

the values ofdy/dxandd2
yldx

2 in terms of the partial derivatives 3//3X,
3 //ay, 3

2
//8*

2
, d

2
fld*dy, d*f/dy* of / '

w.r. to x and y.

Now, f(x 9 y) is a function of two variables x, y and y is again
a function of x so that we may regard f(x, y) as a composite function

of x. Its derivative with respect to x is

3/ dx df dy a/ df dy

3x
'

~dx
+
dy~

'

dx *'

ax +9*
'

dx
'

Also/(x, y) considered as a function of x alone, is identically

equal to 0. Therefore its derivative w.r. to x is 0.

- -
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__ ,_.
dfldy /v

Differentiating again w.r. tox, regarding 9//9X and 3//8y as

composite functions of x, we get

_ _
'

~dx >dy dx\dxdydy*
'

dx

dy dy a.y
2V 8*A

>3
3

Hence

and

-__
dx
~

f
tf

'

_._
.^__

...

Without making use of 10'93, we may obtain dyjdx also as
follows :

Now f(x>y)=0-

Let Sx be the increment in x and Sy the consequent increment
in y, so that

f(x+Sx,

.or

or

, y+Sy)
Sx fy(x,

Let 8x -> 0.

Example

Prove /fart i// 3flrx
2+x3=0, then
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f(x, >>)=>>
3-3ax2

+Jt
s =0.

Substituting these values in (Hi), on p. 214, we get

_
dx* 27>>

_ (x- a)(3ajc
2-

y
Thus .

j
5

<7r, directly, differentiating the given relation w.r. to x,

(2a2x)y*2y(2axx2
)(2ax-x

2
)ty

as before.

Exercises

1. Ifii=Jt-
(y

1
,JC=2r-35+ 4, y=-r+85-5, find

2. If z=(cos y)/x and x=w2-
v, y.=^

v
. find

3. If i- -, ,
-

, v= -
, find ar/cosv" sin* smy v /

4. If Ji=(x+y)l(l-*y) ; x=tan (2r-5
2
), y-eot(r

2
j), find

5. Find dy/dx in the following cases :

(/) x sin (x-^)-(x-|-y)=0. (//) y
x

=sin x.

(j/0 (cos x)f -(sin >^)*=0. (i v) x* ^y*.

(v) (tan x)* +yeoi x=a. (P.U. 1955)

6. If F(x, y, z)=0 find 0z/ax, 3z/ay.

"7. If 2=xyf(vjx) and z is a constant, show that
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8. If/(jc, y)=Q, <p(y, z)=0, show that

?/
.

9
?,. 4L= ?/.. 1*

. (/>./.)>

9. If JH(l-yH^(l-*8
)=fl, show that

y?=- - a
-

. (P.U. 1935\
dX 2

,j _^ 3
-J

10. If u and v are functions of x and >> defined by

xu+ e~ z' sin w, yv-\-e~v cos w,

prove that

d^ = dv
(P.U. 1936)

dy dx

11. If ,4, B, C are the angles of a triangle such that

sin2
/1 + sin

2 B] sin
2
C=constant,

prove that

dA^ tan C-lan B p ,

12. Ifax2
-} 2hxy+ by* -\-2gx-\-2fytc-Q, prove that

"dx*
......

I //*-!-

13. Show that at the point of the surface

where x=yz,
ff~z

"" 1r "I"= X log tfX .

L J

14. Find dy/dx
2
in the following cases :

(/) x*+y*=laxy. (P.U.) (//) x4
-i y*=

(Hi) Jc
6+^5=5fl8

Jc.y. (iv) jc
5

-! y
5=

15. IfAX, >^)=0 and/.T^0, prove that

dx = _ /y d2x ^_S^fv}*-2fa
dy fx

'

dy
2

. (/

16. Given that

/(x, >>)=.xM y
3

3ax>>:=0, show that

_
dx2

'

dy
2

17. If is a homogeneous function of the nth degree in (x, y> z) and if

where X, Y, Z are the first differential co-efficients of, w, with respect to x, y, r
respectively, prove that

. 1950)



PARTIAL DIFFERENTIATION 217

APPENDIX

EQUALITY OF REPEATED DERIVATIVES

A. 1. Equality of fxy and fyx . It has been seen that the two-

repeated second order partial derivatives are generally equal. They
ate not, however, always equal as is shown below by considering two-

examples. It is easy to see & priori also whyfyx (a, b) may bo diffe-

rent from/^ (a, b).

We have

-Iim
A ->

i / / t, i- /K b-\-k) f(a,b)and /y (0, &)= Inn yv
--

'

,

k -* k

li ,Jim
A- >0

r r <= Iim Inn
7 , say.

/7 _> A -> /7/c

It may similarly bo shown that

Iim
A -> /z -> //fc

Thus wo sec that/rj!/(a, ft) and/^ffl, /;) are repeated limits of the

same expression taken in different orders. Also the two repeated
limits may not be equal, as, for example

r v ^ fc v ''
i

lirn Jim
j

. = Iim 1,

A->0 ll

hk _k
and Iim Iim -.----- = Iim

7
=

A _> o/j-^0 n+K A:->0 ^

Examples

1 . Prove thatfxy^ fyx at the originfor the function

x, y are not simultaneously zero andf(Q, 0)=0. (D.U. Hons. 1954)

We have/_(0, 0)= Iim '--^
L
'-Jv^ 9 -'

...(1)
A->0 .

*
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Also /,(0, 0)= lim /(0. 0+k)-fM
...(2)

= lim -- = lim =0..
K

and /,(MH lim

Thus from (1), (2) and (3)

/((>, OH lim t-= l.

Again /,,(0 ( 0)- lim
-

...,4)

Also fl(0, 0)= lim
-

== lim . =0, . .(5)

h^-0 " A->0 "

** fin to lim
-

and /x(0, /c)= lim

From (4), (5) and (6),

/.>, OH I *=
*->o K

Thus /JO, 0)=!^- 1 =/^0, 0),

2.

V ^
/(x, .y)=*

2 tan- 1 --
>^
2 tan-1 -

x /
and is zero elsewhere. (B.U. 1953)

We have
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.. r , /ta,n-l
klh\ . , , h 1= hm

\
h ( .

,,

'

)
k tan-1

fc-oL \ klh J /c J

=A . 1 0=/J, for [tan-
1
*/*]

-> 1 as * -* 0.

A:->0

*

We may similarly show that

Hence the result.

A. 2. Equality of fxy and f^. Theorem. Ifz=f(x, y) possesses
continuous second order partial derivatives d^ld^dy and d*?ldydx, then

Consider the expression

For the sake of brevity, we write

t(x)=f(x,y+k)-f(x,y), ...(1)

so that

<?(h, k)=$(x+h)-t(x). ...(2)

By Lagrange's mean value theorem,

Also

ji, y)]. ...(5)

Again applying the mean value theorem to the right side of (5),

we obtain

)- 0<0t <l.

Thus

Again considering /r(^)=/(A:+/j, y) f(x, y) instead of </t(x)
and

proceeding as before, we may prove that
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Let h - and k -> 0. Then, because of the assumed continuity
of the Partial Derivatives, we obtain

fvx(x,y)=fzV(x,y).

A. 3. Taylor's theorem for a function of two variables.

V /(* y) possesses continuous partial derivatives of the nth

order in any neighbourhood of a point (a, V) and if (a+h, b+k) be

any point of this neighbourhood, then there exists a positive number 9

which is less than J, such that

f(a+h, b+k)=f(a, b)+ h +k A/(<7, b)

Lemma.

We write

-=/(*, y) ;

and

L , 1h
ax +k

Now, we agree to write

dz / . d
,

* d

in the form of the operator

operating on the operand z.

This equality shows that the operators
d

are equivalent.

so that z is a function of t.

Now, we have, by 10'93, p. 210,

dz 8z
dx_

dz dy
di'^'Wx

*

~dt
+

dy
'

"di

dz dz . , 8z dz
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Employing the equivalence of these two operators, we obtain

d*z__
d / dz \

dt^ dt \dt
'

)

d , 8 d
z

d \

8y)
8

, 7
8

lx +k

If, now, we agree to write

we have

d*z

Continuing in this manner, we see that

dnz (
* 8 , 8 \ w

'

where the operator

implies the repeated application of the operator

/i times. Thus we have arrived at the following result :

Jfz=f(x, y) and x=a+ht, y= b-\-kt, where a, b, //, k, are cons-

tants, then

8 \ n

By)
z '

Proof of Taylor's Theorem.

We write

f(x,y)=f(a+ht 9 b+kt)=g(t)<
and apply Maclaurin's theorem to the function g(t) of the single
variable t.

There exists a positive number 6 between and 1 such that

For /= !, this becomes (0 < 6 < 1) . .(/)



222 DIFFERENTIAL CALCULUS

Now

)=/te+A, b+k).

f(0)-/te b).

Also since

Substituting these values in (i), we have the Taylor's theorem's
as stated.

Exercises

1. Show that

> (*

2. By mathematical indication or otherwise, show that

/ h . 9 +/t _3_\" -A"3-7^^ A-^ 8
"z- +

V 3^
+

a>-/ 3^"
l a^-^r

......

on,
4- 4-"c.hn-rkr -"f..t C,n K n-r

3. Show that

(i) sin K sin ^^ary T[(**+ 3x^
2
) cos 0a sin

sin ex cos 0,y] ; < < K

(W) e* sin 6^A>+afrx,y

+|. eu[(a*x* -3ab*xy
2
) sin v-|- (3fl

8^a^-6^) cos ],

where u~a9x, v~b$y. .
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MAXIMA AND MINIMA
A. 4. Maxima and Minima of a function of two variables.

Def. Maximum value. f(a, b) is a maximum value of the function
fix, y)> ifthere exists some neighbourhood of the point (a, b) such that

for every point (a-\>h, 6+fc) of this neighbourhood,

f(a,b)>f(a+h,b+k).
Minimum value, /(a, b) is minimum value of the function f(x, y) r

if there exists some neighbourhood of the point (a, b) such that for
every point (a+A, b+k) of this neighbourhood

f(a, b)<f(a+h, b+k).

Extreme valuej /(a, b) is said to be an extreme value of f(x, y),
if it is a maximum or a minimum value.

A. 41. The necessary conditions for f(a, b) to be an extreme
value offix, y) are that

fx(a 9 b)=Q,fv(a,b)=0.
If f(a t b) is an extreme value of the function /(;c, y) of two

variables x and y then, clearly, it is also an extreme value of the

function/(jc, b) of one variable x for x=a and as such its derivative

fx(a, b) for x a must necessarily be zero. Similarly we may show
that

/,(*, *)=0.

Note 1. As in the case of single variable, the conditions obtained above
are necessary and not sufficient. For example, iff(x,y)Q when jc=0 or y=0
and/(x, v)= l elsewhere, then

/*(0,0)-0,/V(0,0)=:0,

but/(0, 0) is not an extreme value.

Note 2. Stationary value. A function f(x, y) is said to be stationary for

jc=<i, y=b or f(a, b) is said to be a stationary value of /(jc, y) if

Thus every extreme value is a stationary value but the converse may not
be true.

A. 42. Sufficient conditions. To show that

/.(M)=Of //a,&HO,
and

f*(a. b)=AJxy(a, b)=B,tf(a, b)=C
then

(i) f(a t b) is a max. value ifACB*>0 and A<0,
(ii) f(a. b) is a min. value ifAC-B*>0 and A>0,
(iii) f(a> b) is not an extreme value if

AC-B*<O y

(iv) the case is doubtful and needs further consideration, if

It may be noticed that A^O if
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By Taylor's Theorem with remainder after three terms, we.
obtain

fta+h. b+k)=f(a, &)+(
h ~ +k

or f(a+h, b+k)-f(a, b)=hfx (a, b)+kf, (a, b)

(, b)+2hkfacv(a, b)+k%* (a, b)]

where u=a+0h. o=b+6k.
Now

fx(a, 6)=0,/,(a, 6)=0.

Also, we have written

where p is of the third degree in h and fc.

We assume that for sufficiently small values of h, k, the

sign of

is the same as that of

Case 1.

Let ACB 2>0. In this case neither A nor C can be zero. We
write

=-r [(Ah+Bk)*+(AC-B*)k*].

Since ACB* is positive, we see that

is always positive except when

Ah+Bk=Q, fc=0.

i.e., when /*=0, fc=0, when it is zero.

Thus we see that Ah?-\-2Bhk-\-Ck
2
always retains the same sign

which is that of A.

Thus f(a>b) is an extreme value in tbja case a^Jt

,will be a
maximum or minimum according as A is negative or positive.
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Case II.

Let AC-B*<0.

Firstly, we suppose that A^O. We write

Since ACB2
is negative, \ve see that this expression lakes up

values with different signs when fc=0 and when Ah-\-Bk=
}

Q;

Thus in this case/(#, b) is not an extreme value.

The proof is similar when Cr^O,

In case A=Q as well as C=0, we have

so that the expression does assume values with different signs and
accordingly f(a, b) is not an extreme value.

Case HI.

Let AC-B*=0.

Suppose that A^Q. We have

Here the expression becomes zero, when

so that the nature of the sign of
.

f(a+h,b+k)-f(a,b)

depends upon the consideration of p. The case is, therefore, doubtful.

If, now, A= Q then, because of the condition AC=B 2
,
we must

have 5=0.

so that the expression is zero when fc=0 whatever h may be! The
case is again doubtful.

Examples

1. Find the extreme values of

xy(axy).
We write

/(*, y) =xy(a-x-y)=axy-x*y-.\y*.

We now solve the equationsfx~Q and/y=0.
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Thus we have

ay 2xy .y
2=0,

ax x2

These are equivalent to

so that we have to consider the four pairs of equations, viz.,

Solving these, we obtain the following pairs of values of x and

y which make the function stationary :

(0, 0), (0, a), (a, 0), (J*. Jfl).

J 1" (0, 0),

^1=0, 5= a, C=0 so that AC B* is negative.

Thus/(0, 0) is not an extreme value of/(*, y).

For (0, a),

A2a, B= a, C=0 so that AC U2
is negative.

Thus/\0, ^r) is also not an extreme value of/(x, >>).

We may similarly show that f(a, 0) is also not an extreme
value of the function.

For (\a, la),

A\<t, B- \a, C= \a so that AC J3* is positive.

Thus /(|0, i#) is an extreme value and will be a maximum or

a minimum according as, -4, is negative or positive, i.e., according as,

a, is positive or negative.

The extreme value /(^a, Ja)= T̂^
3

.

2. JVmf f/ie extreme value of

2(x-^)
a-x4-^4

. (/>.[/. Hons.)

We write /(x, j;)

fy*(x, y)=4-
We now solve the equationsfx-=zQ t fy=Q y which are

...(1)

...(2)

Adding these, we obtain

-4(x3
+}")=()

or (x+y)(x*- xy+y*) =0,
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which shows that

either x-\-y~Q
or x2 xy+y*=0.

We have, thus, to consider the two pairs of equations, viz.,-- >

and x

The equations (3) give the following pairs of solutions :

(0, 0), (v/2, -V2), (-V2, V2).
The equations (4) give only (0, 0) as the real solution.

For (0,0),

A =4, 5= -4, C=4 so that ACB*^Q
and accordingly this case needs further examination.

For(V2, -V2
)

X= 20, 5= -4, C=-20 so that 4C Ba
is positive.

.. /(\/2, \/2) is an extreme value and is, in fact, a maximum
value as, A, is negative.

We may similarly see that/( y2, \/2) is also a maximum
value.

Note. The case which arises when x=0, as well as ,y=0 can be disposed
of by an elementary consideration as follows:

Now/(0,0)=0.
For points, (x 9 0) along x-axis, where .y=0, the value of the function

=2x-;c=;t'(2--;c
8
)

which is positive for points in the neighbourhood of the origin.

Again for points along the line, y=*x the value of the function 2x4

which is negative.

Thus in every neighbourhood of the point (0, 0) there are points where
function assumes positive values i.e., >/(o, 0) and there are points where the

function assumes negative values i.e., </(0, 0).

Hence /(O, 0) is not an extreme value.

3. Find the minimum value of

when

We write

so that we have to find the minimum value of a function of three*

variables x, y t
z which are connected by a single relation, viz.,

We re-write this relation in the form
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so that z has been expressed as a function of x and y. We now
obtain

where, w, has been expressed as a function of two independent vari-

ables x and y.

We have

(*> ;>)=?*- "* (p- a* - hy) >

<>b

u(x. y)=2y-~
ct[(p- ax-by).

Equating to zero these two first order partial derivatives, we
obt&jn

Again, we have

2 *
2^2

x
C'
2

2ab

a
-

t

Since 4C jB
2

is positive and, A }
is also positive, therefore, w, is

minimum for the values of x and y in question. The minimum value

of, w, therefore, is

Exercises

1. Examine the following functions for extreme values:

(/) ^+4x^+3**+ x. (11 ) ^

//) x*+xy+y*+ax+by. (iv)

4). (vi) (

(v/i) 3x2~^2
4-xa

. (vi/i) 2x*y+x*~y*+2y.

(ix) 2 sin (jc+2y)+3 cos (2x-y). (x) x*y
z
(\ -x-y).

(B.U. 1952)
2. Find all the stationary points of the function

examining whether they are maxima or minima. (D.U. Hens. 1952)
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3. Find the shortest distance between the lines

A. 5. Stationary values under subsidiary conditions. To find the

stationary values of

u=f(x,y, z,w). ...(i)

where the four variables x, y, r, w are subjected to the two subsidiary
conditions

...(2)

...(3)

Now, we can look upon the equations (2) and (3) as determin-

ing any two of the four variables x, y, z, w in terms of the remaining
two. We may suppose, for the sake of definiteness, that (2) and (3)

determine z and w as functions of x, y. Thus u is a function of x,

V, z, w where z and w are functions of A: and y so that u is essentially
a function of two independent variables x and y. Therefore for

stationary values of, w, the two partial derivatives of, w, with respect
to x and y > obtained after z and w have bo3n replaced by their values

in terms of x and y, are respective^ zero.

Equating to zero the partial derivatives of, w, with respect to

x and y\ we obtain

.-0. .-(4)

+/. -0. ...(5)

Again, differentiating (2) and (3) partially with respect to .v and

v, we obtain

"-=0. ...(7)

9z-- -<>. ...(8)

^-0. '...(9)

If, now, 3Z/3X, 3>v/gx, 9z/3j^, 3w/9>> be eliminated out of the six

equations (4) (9), we shall obtain two eliminants, say,

F,(x 9 y 9
z 9 w)=0, ...(10)

^t(^, y, z, >v)=0. ...(11)

Then the four equations (2), (3), (10) and (11) determine the

values of the unknowns x, y, z and w for which u is stationary.
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Note. This method for determining stationary "values of a function
under subsidiary conditions outlined above is unsymmetrical in character m
regard to its treatment of the variables involved. This defect has been remedied
by Lagrange who has given a symmetrical method based on the introduction of
certain undetermined multipliers. This method is explained in the following
section.

A. 51. Lagrange's method of undetermined multipliers. We
multiply the equations (6) and (8) of the preceding section by Aj and
A2 respectively and add to (4), so that we obtain

*) ~=0. ...(12)
ox

Again, we multiply the equations (7) and (9) of the preceding
section by Xl and A, and add to (5), so that we

-1-AalM
~ =0. ...(13)

We, now, suppose that A t
and A2 are determined so as to make

...(14)

...(15)

With this choice of the values of A
x
and A

2 ,
the equations (12) and

(13) give

...(16)

The equations (2) and (3) of the preceding section along with

the equations (14), (15), (16), (17) determine values of Ax , A 2 , and of

x, y, z and w, which render u stationary.

If, now, we write

we see that the equations (14) to (17) are obtained by equating to zero

the four partial derivatives of g, with respect to x, y> z and w so that

all the four variables are being treated on a uniform basis. In practice,

therefore, the necessary equations are to be put down by setting up
the auxiliary function g.

Note. The method outlined above is applicable to a function of any
number of variables which are subjected to any set of subsidiary conditions.

Examples

1. Find the lengths of the axes of the section of the ellipsoid

*+z*lc*=l, by the plane lx+my+nz^Q.
Let (x, y> z) be any point of the section. We write
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We have to find the stationary values of r2 , where x, y, z are

subjected to the two subsidiary conditions

jfrVa' 1, /x=0. ... ()
We write

g(x, y, zM

Equating to zero the partial derivatives of g(x, y, z) w.r. to

x, >> and z
9 we obtain

The equations (11), (///), (/v) and (v) will determine the values of

AI, A
lf x, y, z. These values of x, y, z, when substituted in (/),

will

determine the stationary values of r2 . These operations amount to

eliminating ^ ^ x, y and z from (/), (11), (///), (iv) and (v).

Wo multiply (///), (iv) and (v) by x, y, z respectively and add so

that, on making use of (/) and (//), we obtain

With this value of 7^, the equations (//'/), (iv) and (v) can be re-

written as

/ 2x

n 2z

r^~
~

A"

!-_-'.
Ai

1
c2

Multiplying these by /, m, n respectively and adding, we obtain

/
a

which is a quadratic in r* and (Jetermines, as its roots, the two

stationary values of r8 .
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The geometrical considerations, now show that these two

stationary values of r 2
,
are the squares of the semi-axes of the section,

in question.

2. If u

where

x y z
'

show that the stationary value ofu, is given by

We write

g(x, y, z)=flx'+&V+c'2a+>
( I + y

f
I
-1

)-

Equating to zero the partial derivatives of g(x, y, z) w r, to

x, y and z, we obtain

, y- - =0, 2A 2
=0.

These give

or ax=by~cz. .,, (/)

The equation (/) along with the given subsidiary condition

=1, determine x, y and z.

Exercises

1. Find the minimum value of ,v
a
-h^

2 fz2 when

(w)

(MI) xyz=a*.

2. Find the extreme value of xy when

3. Find the greatest value of axby when

x*+xy+y*^3k*. (D.U. Hons. 1953)

4. Find the perpendicular distance of the point (a> b, c) from the plane

b^the Lagrange's method of undetermined multipliers.

5. Which point of the sphere 2x*=l is at the maximum distance from

tbepohU{2, 1,3)?

6. Find the lengths of the axes of the conic

ax*+2hxy+by
z~l.

7. In a plane triangle, find the maximum value of

ens A COS B COS C.

8.
'

Find the? extttme Va lues of
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subject to

9. Show that the maximum and minimum values of, r 2
, where

r 2=a*x*+b2
y

2+ c2z 2
, jc'+yH z?=l and /x-f iny+wz=0

are given by the equation
72 -.2 2

>7_^ + i,*,v +
f.l>.-0. (D.C/./9J5)

10. If two variables x and y are connected by the relation

ax*+by*=ab,
show that the maximum and the minimum values of the function

will be the values of given by the equation

4(0-a)(0 -b)~ah. (D.I/, //ww. 7957)

Miscellaneous Exercises

1. Find the points of continuity and discontinuity of the following
functions :

2. Determine the points of continuity and discontinuity of the function

f(x) defined by

fin l-/)-o, if r = i

(/-I, ifi</<l,
where n is any integer. (B.U. 1)52)

3. Determine the points of discontinuity of

tan
iX f" L

4. Draw the graph of

and find the points of discontinuity.

5. Determine the points of discontinuity of

(0 [*]+ [-*?. (')

/ 2

(///) lim
(

tan^/
/I ~> oo \

n

6. Show that the function fPU) which is equal to when x=-0 ; to i x

whenO<x<J : to J when * = ; to %x when 4<x<l ; and to 1 whenx--=l. has

three points of discontinuity which you are required to find. (Patna)

7. Examine the continuity of the function

/(0)=0. (D.U. Hons. 1947)
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a
8. Find d0W4 where ,4, J0, Care the angles of a triangle and satisfy the

relation

J/H S 5/it C-f sin C sin A+sin A sin B=h,
where, /r, is constant.

9. Find

V +
^0'(~r )'\ /

in terms of r, when
ra~a*cos 20.

10. Itax*+2hxy+by***l, prove that

x

11. Find
W
/ 1^Vi+ 2 cos fl+a

1

12. If
j,

show that

*

13. If >>=cos (w sin" 1
^:), prove that

If ^ can be expanded in a series of ascending powers of .v, prove that
when iw=6,

(M.T.)
14. If

prove that

Assuming that ,y can be expanded as a series

flo + QiX+ azx
2
-\- ----

prove that

00=0, #!=! and for

/ ivm 2-4 6.... (2m)
=(^i -

15. if e
^ cosa

cos (jc sin a) can be expanded in ascending powers of or,

show that the co-efficient of xn is cos wa/w ! (B.U.)

16. (a) Give the first three non-vanishing terms in the expansion of

sin"" 1
(J sin x).

(b) Show that the expansion upto x4 of x/sinh x is
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17. Use Taylor's theorem to prove that the only function /(x) satisfying

g = -/(*) for all x, /(O)-
- 1 , /'(0)= 0,

is given by

/W=1~^!+4T ...... adinf '

(D.U. Hons. 1952)

18. Prove that whatever the functions /and g,

(I) z**xf(x+y)+yg(x \ry)

satisfies the relation

(//) z=xf(ylx)+g(ylx),

satisfies the relation

19. Given that z is a function of u and t?, while

M = jc
2 /-2xy, r = v,

prove that the equation

<*>) g+f*-y)j;-o-
is equivalent to 9z/av^0.

20. If M = (l 2xy F3
t2

r^, prove that

21. If ii^sin' 1
, then

,2 J_7w tv = _W ' ;
dxdy dy* 4cos 2w

22. Prove that if w is a homogeneous function of the wth degree in x, y,

then

x .*?+
9w

+,-
8

?
l . nM .

3x+ y
ay a^

Prove also that

/* ^ 2 ^ 2 ^ 2 \ - / 92u ,
9

2"
i

9*w

(bF+a7 + ^)(*>-
2"+ 3J*' i

( 3x
+ 3?

+'a?-

where

13.

show that

3'/(r) 9V(r) 3V(r)

3?
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24 If ^^ = Ir
dV

9*
2

97
'

has a solution of the form

Ae~a
sin (\vt~bx).

prove that

25. H=Io (x
3
+y* x*y-xy*), prove that

'

26. Show that if =0 and /U)=log (l + x)then '0' of the Lagrange's
mean value theorem is a continuous function of, A, which decreases steadily from
1 to as, /*, increases from 1 to oo .

27. Show that

(/) *<log [1 /(I -*)!<*/( I -.Y) where 0<x<l.

,where-l<x<0.

28. A slight error x is made in measuring the semi-vertical angle of a
cone which circumscribes a sphere of radius R. Find the approximate error in

the calculated volume of the cone and show that, for a given Sac, the least value
of the error is

647TR3

75-
- V5 -*a '

29. If the three sides a, b, c of a triangle are measured, the error in the

angle A, due to given small error in the sides, is

, A sin A da A ~, db . dc
c/A= r~ir-; ~. --- cot C cot B -

sin B sin C a c

-.

when

(i) a=3, 6=~5, c = 4
; (ii) a=3, 6=~4, c=2 ;

31. Findlim ~~-
3̂2.

33. Obtain

</) lim .(//)lim .7., (///)

34. Find lim tan(sin^-sin(tan^) (D.U. Hans. 1955)
x > o sin x ""x cos ^^ 2 smz x

35. Exarr i le where the following functions are continuous for *=0.
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^
(/) f(x) = (cos *)

cot2 x
, (*?*0),/(0)- 1/>U?.

36. Having given that the fraction

(tanx-A:e
sin 'v

+jc
a
+BJC3

)/x
n

maintains a finite non-zero limit as x tends to zero, prove that n must be equal
i 5 -

( Indian Pol ice 1932)

37. Find the maximum values of the function

U2
-3;c-f 2)/(x

2 + 3x+ 2).

38. Sketch the curve

sin

from *0 to A: ==2rr, indicating correctly the positions of maxima and minima
if any, of the function.

39. Show that the function

4(jc-l)-
1

has a single maximum and a single minimum value and that the function does
not lie between its maximum and minimum. Draw the graph of the function.

40. Find the maximum and the minimum values of (1 x)"e
x

.

Show that ex (1 + x)j(l~x) steadily decreases as x increases from oo

to 1 and that it has one and only one minimum for values of x between x=l and
*= + <. (P. U. 1938)

41. Prove that |(35 sin4* 40 sin
2
*-} 8) ranges in value between unity

and
.J.
and has also | as a maximum value.

42. Show that #(*) = i sin x tan A: log sec x is positive and increasing in
the interval <jc<n/2. (M.T.)

43. Find the maxima and the minima of, >', where

2 cos x+ 1 and (adbc)y*Q. (B.U.)

44. If x*axy* oPy= Q9 prove that y is maximum where 3xy+ 4o2=0 and
a minimum where * = 0. (B.U.)

45. Draw the curve r=a(2 cos 04-cos 39). Show that the extreme
values of the radius vector are 3a and /3>/3.

46. The sum of the surfaces of a cube and a sphere is given. Show that
when the sum of their volumes is least, the diameter of the sphere is equal to
the edge of the cube.

47. Given the volume of a right cone ; required its dimensions when the

surface is least possible.

48. Prove that the volume of aright circular cylinder of greatest volume
which can be inscribed in a sphere, is \3/3 times that of the sphere.

49. An ellipse is inscribed in an isosceles triangle of height h and base
2k and having one axis lying along the perpendicular from the vertex of the

triangle to the base. Show that the maximum area of the ellipse is >|3nM:/9.

50. A sector has to be cut from a circular sheet of metal so that the

remainder can be formed into a conical shaped vessel of maximum capacity.
Find the angle of the sector. (M.U.)

51. Find the greatest rectangle which can be described so as to have two
of its corners on the latus rectum and the other two on the portion of the curve

cut off by the latus rectum of the parabola.

52. Find the greatest and least values of (sin x)
sm *

(B.U.)



CHAPTER XI

SOME IMPORTANT CURVES

11-1. The following chapters will be devoted to a discussion of
such types of properties of curves as are best studied with the help
of Differential Calculus. It will, therefore, be useful if we acquaint
ourselves at this stage with some of the important curves which will

frequently occur.

11-2. Explicit Cartesian equations of Curves. A few curves
whose equations are of this form have already been traced in Chapter
II. We now trace another very important curve

,

which is known as Catenary.

The following particulars about the curve will enable us to
trace it :

(i) Since

cosh =s "o-l

on changing x to x, we see that

y=c cosh =c cosh (. - \
c \ c J'

so that the two values of x which are equal in magnitude but oppo-
site in sign give rise to the same value of y.

Hence the curve is symmetrical about y-axis.

(ii) When x=0, y=c so that A (0, c) is a point on the curve.

(111) ~j- =sinh , which is positive when x is positive.

Thus, y is monotonically increasing in [0, oo
).

Also, -J- \
=0, i.e., the slope of the tangent is, 0, for

I a "
\x \j

x=0 so that the tangent is parallel to x-axis at A (0, c).

Hence if the point P(x, y) on the
curve starts moving from the position

/ A (0, c) such that its abscissa increases,
then its ordinate also increases. Also
since y -> GO when x -^ oo

,
the curve is

not closed.

/
-^^

The curve being symmetrical about
>>.axis, we have its shape as shown in the
adjoining figure.

Fig. 57

238
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Note. In books on Statics it is shown that the curve in which a unifor-

mally heavy fine chain hangs freely under gravity is a Catenary.
113. Parametric Cartesian Equations of Curves.

Let/(/), F(t) be two functions of t defined for some interval.

We write

To each value of /, there corresponds a pair of numbers x, y as

determined from the equations (/), (i7). To this pair of numbers x, y
there corresponds a point in a plane on which a pair of rectangular
co-ordinate axes has been marked. Thus the two equations associate

to each value of, t, a point in the plane. The two equations (i) and

(ii) then constitute the parametric equations of the curve determined

by the points (x, y) which arise for different values of the parameter t.

The point P on the curve corresponding to any particular value,

f, of the parameter is denoted as the point P (t) or simply 'f.

We assume that the reader is familiar with the standard para-
metric equations of a parabola and the Ellipse so that we may only
restate them here. Afterwards the parametric equations of a Cycloid,

Epicycloid and Hypocyoloid will be obtained from their geometrical
definitions.

11*31. Parabola. The parametric equations
x=ata

, y=2at
represent the parabola having its axis along x-axis and the tangent
at the vertex along >>-axis, and latus rectum equal to 4a.

The point P(t) describes the part ABO of
y,

the parabola in the direction of the arrow-head
as the parameter, f, continuously increases from

oo to 0.

For the vertex 0, f=0. Again, the point
describes the part OCD of the parabola in the
direction of the arrow-head as the parameter t

continuously increases from to oo .

11-32.
Fig. 58

The Ellipse. The parametric equations
x=a cos 0, y=b sin

represent the ellipse whose axes lies

along x-axis and y-axis and are of

lengths 2#, 26, respectively.

The point P(0) describes the

parts AB, BA', A'B, B'A of the ellipse
in the direction of the arrow-head as
the parameter, 6, continuously incre-

ases in the intervals (0, TT), (I?r, TT)

(TT, ITT), (ftf, 2ir) respectively.

59.
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11*33. Cycloid The Cycloid is the curve traced out by a point

marked on the circumference of a circle as it rolls without sliding along

afixed straight line.

Let the rolling circle start from the position in which the

generating point P coincides with some point O of the fixed line X'X.

Take the point O as origin and

the fixed line as *-axis. When the

rolling circle has rolled on to the

position shown in the figure, the

generating point has moved from O
-*X to P(x, y) so that

Fig. 60 O/=arc PL

/

Let, a be the radius of the circle. Let, 0, be the angle between

CP and C/so that it is the angle through which the radius drawn to

the general point has rotated while the circle rolls from the initial

to its present position. Thus arc PI=a0. We have

x=OL=OI-LI--=OI-PM=aO-a sin 6) ;

= <j(l-cos 0).

Thus x=a(0-sin 6))

y=a(l cos 6))

are the parametric equations of the Cycloid ; being the parameter.

Note. While the circle makes one complete revolution, the point P
describes one complete arch OVO of the Cycloid, so that increases from to
2n as the point P moves from O to O'.

The position K of the generating point which is reached after the circle
revolved through two right angles is shown as the verttx of the Cycloid.

The Cycloid evidently consists of an endless succession of exactly con-

gruent portions each of which represents one complete revolution of the rolling
circle.

11-34. Epicycloid and Hypocycloid. The curve traced out by
a point marked on the circumference of a circle as it rolls without slid-

ing along a fixed circle, is called an Epicycloid or Hypocycloid accord-

jpg
as the rolling circle is outside or inside the fixed circle.

We shall first consider the case of an Epicycloid.

Let O be the centre and, a, the radius of the fixed circle. Let
the rolling circle start from the position in which the generating
point P coincides with some point O of the fixed circle. We take the

puint O as origin and OA as A^-a is.
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The generating point has moved on from A to P (x, y) when
the rolling circle has rolled on to the

position shown in the figure so that

arc J/~arc PL
Let Z_40C=0, /_ICP=<f>
a0 arc ^47 arc PIb<t>

i.e., (/>=aejb.

Here, 0, is the angle through
which the line joining the centres of
the two circles rotates while the rolling
circle rolls from its initial to its present
position.

Therefore

/_ A
TPP= /.OCP- /_ OPiV

x=OL

Fig. 61.

=OP cos +OP sin

cos 6 b cos

|TT)

cos b cos , ;

y -LP

sin 6 b cos (0+^ Jir)

sin 6 b sin (0+<)
fl+fc

b
sin ft sin

Thus
a+b

x=(a+b) cos b cos . 0,

a+b
y=(a+b) sin b sin

'

0,

are the parametric equations of the Epicycloid ; being tbe para-
meter.

The tracing point would describe an Hypocycloid, if the rolling
circle were within the fixed circle. Its equation can easily be

obtained by changing btob in the equations of the Epicycloid.

Thus

x=(a b) cos 0+b cos

y= (a-b) sin 0+b sin
b

b

*
0,

are the parametric equations of the Hypocycloid.
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In making one complete revolution the rolling circle will des-

cribe 2bno the length of the circumference of the fixed circle.

Let the ratio a/b of the radii of the circles be a rational number
p\q in its lowest terms so that

a p
v = -

, i.e., aq~bp or 2na.q.~27Tb.p.b q

This relation shows that in making, /?, complete revolutions,

the rolling circle doscrib3S the circumference of the fixed circle q,

times and then the generating point returns to its original position.
Therefore the path consists of the repetition of the same, p, identical

portions.

In case a\b is irrational, the tracing point will never return to

its original position and so the path will consist of an endless series

of exactly congruent portions.

Some Particular cases of Epicycloid and Hypocycloid.

(i) For a b, the equations of the

epicycloid become

x=2a cos 0a cos 20,

y2a sin 6 a sin 20.

In this case the generating point will

return to its original position after the roll-

Fig. 62. ing circle has made one complete revolution.

The shape of the curve is shown in the adjoined figure.

(//) Four cusped hypocycloid. If a~4b, the equations of hypo-

cycloid become

jt=| a cos + tf cos 30,

^=| a sin \a sin 30.

Now,
cos 30=4 cos8 3 cos 0, sin 30= 3 sin 04 sin3 0.

x=a cos3 0, y=a sin 3
0,

are the parametric equations of a curve known

hypocycloid or astroid.

Here 0//?=4 so that the path consists

of the repetitions of four portions. The

thickly drawn curve ABA'B' gives the

path of the point.

For the points A, B, A'
9
B' the values

of are 0, Tr/2, TT, 3?r/2 respectively.

Eliminating between the parametric
equations of this curve, we obtain

four cusped
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h is also the form in which the equation of a four-cusped hypo-
cycloid is sometimes given.

Ex. Show that hypocycloid becomes a straight line for a=2b.

114. Implicit cartesian equations of curves. If f(x f y) be a
function of the two variables x and y, then

fa, y)=0.
is the implicit equation of the curve determined by the points whose
co-ordinates satisfy it.

Curves whose equations are of the form f(x, y)~Q possess
many points of interest not offered by curves with explicit equations
of the form y=F(x).

In the following, we consider only rational algebraic functions

f(x > y) so that the form of the equation, when arranged according
to ascending powers of x and y, is

The same equation may, in a concise form, be written as

where, u k , represents the general homogeneous polynomial of the

degree in x and y.

The degree of any term means the sum of the indices of x and

y in that term and the degree of the curve means the highest of the

degrees of each term.

Branches of a curve. If, in the rational algebraic equation

of degree w, we replace x by any fixed value, then there will result

an equation in, y, whose degree will bo less than or equal to n. On
solving, this equation will give as many values of, y, as is its degree.
Thus with the given value of, x. as abscissa there will be as many
points on the curve as are the difTeront real roots of the equation.

As, x, goes on taking different values, each of these points will sepa-

rately describo what is known as a branch of the curve.

We now trace a few important curves. In each case we have

to examine how, y, will vary as x
} starting from some fixed value,

increases or decreases.
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11-41. (x
2+y2

)x-ay
2=0. (a > 0).

We write the equation as

Cissoid of Diodes.

so that, we see, that to a value of x correspond two values" of y
which are equal in magnitude but opposite in sign. The two values

of y determine the two branches of the Cissoid which are symmetri-

cally situated about x-axis.

We consider one branch,

y=>

and the form of the other branch can be seen by symmetry.
We have

dx
=~

The following particulars about the curve will enable us to

trace it :

(/) The expression xj(a-x) under the radical is negative when
x is negative or when x is greater than a and is positive when x lies

between and a. Thus for y to be real, x must lie between
and a.

Hence the curve is entirely situatedjjsetween the lines A'=0
and x=a.

(ii) When x=0, >>=0 so that the ^branch passes through the

origin.

.(ill) dy/dx=Q, when x=0 or %a. The values a of x is outside

the interval [0, a] of the admissible values of x.

Thus the slope of the tangent at the origin to the branch is

so that the branch touches the x-axis at the origin.

(iv) For values of x between and a, the value of dy\dx is

positive so that the ordinate y monotonically
increases.

Also as x a, y

Fig 64.

Hence we have]" the shape of the

curve as shown, the* two symmetrical
branches lying in the first and the fourth

quadrants.

Note. It is important to notice that origin
is a point common to the two branches and the

two branches have a common tangent there.
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11-42. (x
2+y2

)x~a(x
2-y2

)=0,

We write the given equation as

Strophoid.

i.e.,

so that we see that to a value of x there correspond two values of
v (giving rise to two branches) which are equal in magnitude but

opposite in sign. The two branches of the curve are, therefore,

symmetrically situated about X-

We have

dy __

dx

Some particulars which enable us to trace the curve will now
be obtained.

(/) The expression (a x)l(a-i-x) under the radical is positive
if and only if .v lies between a and a. Thus the curve entirely lies

between the lines x~ a and x = fi.

(ii) When .x=0 or 0, both the values of y are so that the

points (0, 0) and (a, 0) lie on both the branches.

(///) When .x=0, dy/dx= I so that the slopes of the two tan-

gents at the origin to the two branches are 4-1. Hence y=x and
v x are two distinct tangents to the two brandies at the origin.

For both the branches dyjdx tends to infinity as x ~> a so that

at (a, 0) the tangent to either branch is

parallel to j'-axis.

(/v) dyjdx0 for values of .v given

by
a8 a.x .x^O,

i.e., for x-=-a(liV5 )/--

The value 0(1 -f- \/5)/2 does not

belong to the interval [ a, a] of the ad-

missible values of x.

Thus for both the branches,

for

only.

(v) When x->-a, v->-foo for one branch and oo for the

other.

Hence we have the shape of the curve as shown.

Note. Both the branches of the curve pass through the origin and have

distinct tangents there.
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11-43. ay2-x(x-fa)^0, (a > 0).

Clearly,

are the two branches of this curve.

Also
dx

(/) The point (a, 0) lies on both the branches. To no other
negative value of x corresponds a real value of y.

The value of dyjdx is not real for

(-*, 0).

() (0, 0) lies on both the branches.

Also, dy/dx tends to infinity for either branch

as x ~> 0. Thus .y-axis is a tangent to the

two branches at the origin.

(Hi) As x takes up positive values only
one value of dy/dx is always positive and the

other always negative. Thus the ordinate y
for one branch monotonically increases and
for the other monotonically decreases,

(iv) When x ooFig. 66.

y -> oo for one branch and -> oo for the other.

Also when x -> oo ,

dy 1 P3V*' a 1 j. j * - c -x
~T~= -t / \ 4-i ; tends to inanity.
rf*

-^
y'tfL 2 -V* J

This shows that as we proceed to infinity along the curve, the
tangent tends to become parallel to j^-axis. This is possible if and
only if at some point, the curve changes its concavity from down-
wards to upwards.

We have the shape of the curve as in Fig. 66.

Note. The peculiar nature of the point ( a, 0) on the curve may be
carefully noted. This point lies on either branch, but no point in its immediate
neighbourhood lies on the curve.

11-44. x3
ay

2=0, semi-cubical para- y
The discussion of this equation which is

very simple is left to the student.

Its shape is shown in the adjoined
Pig. 67.

11 45. x3+y3
~3axy=:0. Folium of Des-

cartes.

It will be traced in Chapter XVIII.

Fig. 67.
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Important Note Putting y=tx in the equation y
2
(a-x)=x* of the

Cissoid, we obtain

at* at3

which are its parametric equations ;
t being the parameter.

We may similarly show that

3af __ 3af
2

*~
1+Y 3

' ^ 1+t3
'

are the parametric equations of the Strophoid, Semi-cubical Parabola and Folium
respectively.

This method of determining parametric equations is not general and
applies only to such curves as we have here considered.

115. Polar co-ordinates. Besides the cartesian, there are other

systems also for representing points and curves analytically. Polar

system, which is one of them, will be described here.

In this system we start with a fixed line OX, called the initial

line and a fixed point on it, called the pole.

If P be any given point, the distance OP=r is called the radius
vector and /_XOP~0, the vectorial angle. The two together are re-

ferred to as the polar co-ordinates of P.

11 51. Unrestricted variation of polar co-ordinates. If we were
concerned with assigning polar co-ordinates to only individual points
in the plane, then it would clearly be enough to consider the radius

vector to have positive values only and the vectorial angle 9 to lie

between and 2ir. But, while considering points whose co-ordinates

satisfy a given relation between r and 6, it becomes necessary to re-

move this restriction and consider both r and 6 to be capable of vary-

ing in the interval
(

x ,
oo

). The necessary conventions for this will

be introduced now.

The angle, 0, will be regarded as the measure of rotation of a
line which starting from OX revolves round it

;
the measure being

positive or negative according as the rotation is counter-clock-wise

or clock-wise.

To find the point (r, 0) where r is negative and, 6, has any
value, we proceed as follows :

Let the revolving line starting from OX revolve though 0. We
produce this final position of the revolving line backwards through
O. The point P on this produced line such that OP

\
r

\

is the

required point (r, 6).

The positions of the points (1, 97T/4), (1, 9ir/4), (1,
-

( 1, 97T/4) have been marked in the diagrams below.
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'X

Fig. 68. Fig. 69.

v\

Fig. 70. Fig. 71.

It will be seen that according to the conventions introduced
here a point can be represented in an infinite number of ways. For
example, the points (-1, ir/4), (I, oir/4), (I, 2/17T+ 57T/4), (n is any
integer), are identical.

11 52. Transformation of co-ordinates. Take the initial line
OX of the polar system as the positive direction of Jf-axis and the

pole O as origin for the Cartesian system The positive direction of
K-axis is to be such that the l\neOX after revolving through ?r/2 in

counter-clock-wise direction comes to coincide with it.

Let (x, y) and (r, 9) be the cartesian and polar co-ordinates res-

pectively of any point P in the plane.

From the A OMP, we get

OJf/OP=cos o, 'X x=r cos 6 .. (i)

AfP/0P = sin 0, i.e., y=r sin d ..
(//')

The equations (/')
and (//) determine the

cartesian co-ordinates (x, y) of the point P in

terms of its polar co-ordinates (r, 6) and vice

Fig. 72 versa

11 6. Polar Equations of Curves. Any explicit or implicit re-

between, r and 9 will give a curve determined by the points
whose co-ordinates satisfy that relation.

Thus the equations

determine curves,

The co-ordinates of two points symmetrically situated about the

fnitial line or of the form (r, 9) and (r, 9) so that their vectorial

angles differ in sign only.
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Hence a curve will be symmetrical about the initial line if, on

changing f) to 0, its equation does not change. For instance, the

curve /=#(! +cos 0) j s symmetrical about the initial line, for,

/-=tf(l+ cos 0)= a[l+cos( 0)].

It may be noted that

r=a represents a circle with its centre at the pole and radius

a
;
and

9=b represents a lino through the pole obtained by revolving
the initial line through the angle b.

A few important curves will now be treated. To trace polar
curves, we generally consider the variation in r as varies.

11-61. r=a(l cos 0). Cardioide.

(/) The curve is symmetrical about the initial line.

(//) When 0-0, r= 0.

(/'//) When increases from
to 7r/2, cos 9 decreases from 1 to

and, therefore, r increases conti-

nuously from to a. When = 7r/2,
r a.

(iv) When 9 increases from

Tr/2 to TT, cos 9 decreases from to

1 and, therefore, r increases from
-~..^

a to 2a. When =
IT, r='2a. Fig. 73

The variation of 9 from TT to 2ir ne^d not bo considered because

of symmetry about the initial line.

Hence the curve is as shown.

Ex. Trace the curve r ----0(1-1- cos 0).

11*62. r2^ a- cos 20. Lemniscate of Bernoulli!.

It is symmetrical about the initial line and so we need consider

the variation in r as 9 varies from to TT only.

We consider positive values of r only.

(/) When 0=0, r=a.

(//) When increase from to ir/4, 20 increases from to ir/2

so that cos 2'y decreases from 1 to and, therefore, r decreases from
a to 0.

y4
When = ir/4, r= 0.

'

, (in) When increases from Tr/4 to

.*'' 7T/2 and from ir/2 to 3-7T/4, cos 20 remains

I negative and so r is not real. Thus no

^v point on the curve corresponds to these

values of 0.

When fl
= 3ir/4,r=0.

;

NX
X

(iv) When increases from 3ir/4 to

Pig. 74 TT, 20 increases from 3ir/2 to 2-rr to that
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cos 20 increases from to 1 and, therefore, r increases from to a.

Hence we have the curve as shown.

It is easy to see that the point P will describe exactly the same
curve even if we take, r, to be negative.

The curve consists of two loops situated between the lines

To obtain the cartesian equation of the lemniscate, we re-write

the polar equation as

r2=a2
(cos

2 sin20)
or

r4=a2
(r

2 cos2 r2 sin2 0).

Therefore, we obtain

which is a well-known form of the equation of the lemniscate and is

of the fourth degree.
11 63. rw=am cos m0,

for m= \, 1, 2, 2, , J.

(1) For w 1, we have

r=a cos

1T^ or r
2=0rcos

^ * '
/.*., x2+^2=^x,
which is a circle (Fig. 75) with its centre at

Fig. 75 (0/2, 0) and radius (a/2).

(2) For m= 1
,
we have

r^sstf"1 cos ( 0),

#= r cosor

a~-x

which is a straight line perpendicular

(Fig. 76) to the initial line and at a distance,

a, from it.

(3) For w~2, we have

r*=a2 cos 20,

which is lemniscate. Fig. 76.

(4) /w m= 2, we have

r-2=a- 2
cos(-20)

or a2=r2 cos 20

= r
2
(cos

2
sin*0)

or a2=x y ,

>X which is known to be a rectangular

hyperbola (Fig. 77). To trace this

curve, write its equation in the form

20

Fig. 77
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and note the following points about it :

(0 It is symmetrical about the initial line.

(//) When 0=0, r=a. When increases from to 7T/4, r in-

creases from a to oo .

(iii) When varies from Tr/4 to 37T/4, r remains imaginary.

(i'v) When varies from 3?r/4, to TT, r decreases from oo to a.

(5) F0r m= J, we have

or

or
=a cos2

which is a Cardioide.

(6) For

i.e.,

or

or

2r=a(l+cos 0),

w |, we have

=r cos2 i

=r(l+co"s 0)J2

= l+cos0, Fig. 78.

v/hich is known to be a parabola (Pig. 78).

To trace this curve (Fig. 78), we re- write its equation in

form

2a
r ~~

1+cos
and note the following points about it :

(/) It is symmetrical about the initial line.

(//) When 0=0, r~a. When increases from to TT, 1+cos
decreases from 2 to and, therefore, r increase from a to oo .

11-64! r--a0, (a>0). Spiral of Archimedes.

(/) When 0=0, r=0, so that the curve goes through the pole.

(//) When increases, r increases.

Also,

when ~> + oo
,

;

when -> oo
, , oc

Thus the curve starting fron*

the pole goes round it both ways an

infinite number of times. The con-

tinuously drawrn line corresponds to

positive values of and the dotted

one to negative values of 0.

Fig. 79.
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or

or

1165. r0:=a,(a>0). Hyperbolical Spiral.

Here

r=flf/0.

(i) r is positive or negative according as is positive or negative.

(iV) When
|

6
\
increases, [

r
\

decreases.

Also

when |0
when

|

0,|r|->x>.
oo

,
r -> 0.

(ill) Now

Fig. 80.

r sin 0=(fl sin 0)/0

>>=(a sin 0)/0 which -;> a as -> 0.

The ordinate of every point
on the curve approaches a as

approaches 0. We thus have the curve

as drawn.

The continuously drawn line

corresponds to positive values of 0,

while the dotted one corresponds to

negative value of 0.

J>01166. r=ae
, (a, b>0). (Equiangular Spiral)

(/) When 0=0, r=a.

(ii) When increases, r also increases.

Also when -> GO
,
r > GO

;
when -> - x

,
/* ->

(i/i) r is always positive,

We thus have the curve as drawn.

The justification of the adjective

'Equiangular' will appear in Chapter XII,

Ex, 1. p. 269.

.

Fig. 81

11-67. r=asin30, (a >$}. Three leaved rose. (D.U. 1949)
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(i) When 0=0, r=0. As increases from to 7T/6, 30 increases

from to 7T/2 and, therefore, r increases from to a.

(ii) As increases from 7T/6 to Tr/3, r decreases from a to 0.

(///) As increases from 7T/3 to 7T/2, r remains negative and

numerically increases from to a.

(iv) As increases from ?r/2 to 27T/3, r remains negative and

numerically decreases from a to 0.

It may similarly be shown that as increases from 27T/3 to

57T/6 and from 57T/6 to TT, the point P (r, 0) describes the second loop
above the initial line.

If increases beyond TT, the same loops of the curve are repea-
ted and we do not get any new point.

11-68. r=a sin 20. Four leaved rose.

The discussion of this equation is left to the reader. Its shape
only is shown in figure 83.

Fig. 83.



CHAPTER XII

TANGENTS AND NORMALS

[Introduction. This and the following chapters of the book will be de-
voted to the applications of Differential Calculus to Geometry. The part of

Geometry thus treated is known as Differential Geometry of plane curves.]

Section I

Cartesian Co-ordinates

12 1. EQUATIONS OF TANGENT AND NORMAL.

12 11. Explicit Cartesian Equations. It was shown in Ch.

IV 4-15, p. 77 that if ^ be the angle which the tangent at any point

(x, y) on the curve y=f(x) makes with x-axis, then

tan *=
-j

=/'(*).

Therefore, the equation of the tangent at &ny point (x, y) on the

curve y=f(x) is

Y-y-f'()(X-x), ...(i)

where X, Y are the current co-ordinates of any point on the

tangent.

The normal to the curve y=f(x) at any point (x, y) is the straight

line which passes through that point and is perpendicular to the

tangent to the curve at that point so that its slopa is, -!//'(jt).

Hence the equation of the normal at (x, y) to the curve y=f(x) is

(X-x)+f(x)(Y-y)=0.

12-12. Implicit Cartesian Equations. For any point (x, y) on

the curve /(*, y)=Q where dfldy* 0, we have

dy

'

dx

Hence the equations ofthe tangent and the normal at any point

(f,y) on the curve /(x, y)=0, are

rt =0.nd(X-x, _(V-n =0.

respectively,

Cor. A symmetrical form of the equation of the tangent to a

rational Algebraic curve. Let f(x, y) be a rational algebraic function

of x, y of degree n. We make f(x, y) a homogeneous function of

254
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three variables x, y, z by multiplying each of its terms with a suit-

able power of z. Then by Euler's theorem, ( 10'81, p. 199) we have

i.e.,

"^ d'y~~'~
z

dz
'

so that the equation

/ V_ Y\ df , /

yr__
v 8/ ^Q

of the tangent takes the form

or

x.j9.x
or

X ?
f
+Y 8f

+Z?
f
=0,

cx 8y 8z

where, for the sake of symmetry, the co-efficient r of 8//8- has been

replaced by Z.

The symbols Z and r are to be both put equal to unity after

differentiation.

This elegant form of the equation of the tangent to a rational

algebraic curve proves very convenient in practice.

12-13. Parametric Cartesian Equations. At any point *f of

the curve x=f(t) y y=F(t), where/'(0^0, we have

dy _ dy dt
_F'(t)

dx
~

dt
'

dx ^f
r

(t)

'

Hence the equations of the tangent and the normal at any point
*t

9

of the curve *=/(/), y=F(t) are

[X -f(t)]F'(t)
- [Y- F(t)]f'(t) =0,

and

[X-f(t)]f'(t)+[Y-F(t)]F(t)=0,

respectively.

Examples

1. Find the equations of the tangent and the normal at any point

(x, y) of the curves

(/) y=c cosh (xjc). (Catenary) (ii) x
m
la

m
-\-y

m
lb
m= l.
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(i) For y~c cosh (xjc), we have

dy . x
,
= sinh - .

ax c

Hence the equations of the tangent and the normal at any
point (x, y), i.e., (x, c cosh xjc) are

x xy c cosh =(A
r

x) sinh

and (x \ x
y c cosh -

)
sinh +X x^O,

c J c
^

respectively ; X, Y being the current co-ordinates.

(//) Let /(x, y)^* + tt 1=0.

df my
m-*

dx
~~

a

Hence

Therefore, the equation of the tangent at (x, y)

or

y
m _

for (x, y) lies on the given curve.

Also, the equation of the normal at (x,y) is

or

x-x y-v

Another method. The given equation is of degree m. Making
it homogeneous, we get

jW ywM **)%. +>-*".
so that
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Hence the equation of the tangent is

^ \-~/ti---
Z.mz- 1^. (cor. 12*12, p. 254)

Putting Z=z= l, we obtain

am ' bm '

as the required equation of the tangent.

2. Find the equations of the tangent and normal at 6=n/2 to the

Cycloid

x^a(9sin 6), y=a(lcos 9).

Wejiave

-r- a( \ cos
)
= 2a sin2 ,

a0 ~i

dy . n rt . 9 6=a sin 2a sin cos .

civ 2i 2i

dy dy dd dy dx __ 9

dx
~

d9
"

dx
=

rftf
; rf^

~" C
2

'

Thus

Also, for 7T/2, we have jc=0(7T/;2 1) and j a. Hence the

equation of the tangent at 0=7T/2, i.e., at the point [0(7T/2 1), a] is

-a= -^Tr- or -=aTr-a t

and the equation of the normal is

y-a=-l[*--<i(i7r--l)] or -Y+r=Jair.

3. Prove that the equation of the normal to the Aitroid

may be written in the form

x sin <f)y cos
(f>+ a cos

Differentiating

we get



268 DIFFERENTIAL CALCULUS

Therefore the slope of the normal at any point (x, y)

=**/A
But the slope of the given line=tan

<f>.

We write

. ...()

Equations (/) and (11) have now to be solved to find x and y.

They give

or

y$=a* cos2^, i.e., }>=0cos3<.

Substituting this value of y in (//), we get

x*=flrsin
<f>, i.e., x~a sin3<.

Thus tan
<f>

is the slope of the normal at (a sin3^, a cos 3
<). The

equation of the normal at the point is

y a cos3<i=-^-^(x a sin3<i),T cos
<f>

Y/

or

y cos <f>acos*<f>~x sin
<f>

a sin4
^,

i.e.,

x sin < y cos ^+fl(cos
2
</>

sin2^)(cos
2
^+sin

2
^)=0 ?

i.e.,

x sin
</) y cos <^-f a cos 2^=0,

which is the given equation.

4. Find the condition for the line

x cos 0+y sin 6=p, ...(/)

to touch the curve

x/a+ylbm=l. ...(/I)

In Ex. 1, (//) page 255, it was shown that the equation of the

tangent at any point (x, y) of the curve (11) is

where X, Fare the current co-ordinates.

We re-write the equation (/) in the form

XGOB 0+Y sin 0~p=0,

taking X, Y as current co-ordinates instead of x, >>.

The equations (in) and (/v) represent the same line.
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or

am cos 6 bm sin p
'

(a* cos 6 \l/(m 1) _ /6W sin 0\l/(m 1)X
~\ p~ )

> y~( p J

The point (x, y) lies on the given curve. Therefore
1 cos S \w/(w 1) 1 /6*1

sin
i -r

or

(0 cos 0)
' + (&sin0)

^
==P

which is the required condition.

5. Show that the length of the perpendicularfrom thefoot of the

ordinate on any tangent to the Catenary

y=c cosh (x/c),

is constant.

Equation of the tangent at any point (x, y) of the Catenary is

X sinh x/c F+(rcosh xjcx sinh x/c)=0 (See Ex. 1. p. 255).

The foot of the ordinate of the point (x, y) is the point (x, 0).

The length of the perpendicular from (x, 0) to the tangent

__x sinh x/c + (r cosh x/c x sinh x/c)

_c cosh x/r __

cosh x/r
~~

*

which is free of x, y and is, therefore, constant.

6. SViou' that the length of the portion ofthe tangent to the astroid

intercepted between the co-ordinate axes is constant.

Differentiating the given equation, we get

,''-*+ !'-'-
dy y*

Therefore the equation of the tangent at any point (x, y) is.

yt
Y-y=- y

r (X- X
),
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or

=x* y* fl*. (0

The tangent (/)cuts JV-axis where y=0. Hence its intersection

with A'-axis is

A(x^ 9 0).

Similarly, on putting ^=0 in (/),
we find that its intersection

with F-axis is

5(0, yl($).

Therefore AB=<x$a

which is free of x and y and is, therefore, a constant.

Exercises

I- Find the tangent and normal to each of the following curves :

(/) y*=4ax at (0, 20). (//) x*l<P+y*lb*=l at (*', /).

<iii) xy=cf at (cp, c/p). (iv) Ua
+/)*-0>>

2=0 at x-0/2.
<v) (x

i+^2
)A:~0(jc

2
->'

2)=0 for jc=-3a/5.
<v/) x2

(jc-^)-f0
?
(x+>>)=0 at (0, 0).

(v/i) x= 20cos^ 0cos 2^,^=2a sin ^ a sin 2^ at (9=^/2.
2
(x

2
4-y

2)=^V at (c/cos 0, c/sin ^).

2. Find the equation of the tangent to the carve c*U
8
-fy

t
)=JcV in the

form x cos 3
0-f>> sin3 = c.

3. Show that the tangent to the curve 3xy*-2x-y=l at (1,1) meets the

curveagainat (16/5, 1/20).
4. Prove that ths equation of the tangent at any point (4m

2
, 8m3

) of the

semicubical parabola x3 =y2
is y~3mx4m3 and show that it meets the curve

again at (m\ m1
), where it is a normal if 9ma =2. (D.C/. Hons., 1957)

5. Find where the tangent is parallel to yf-axis and where it is parallel to

F-axis for the following curves :

(/) x*+y*=a*. (//) x3
4-^

3= 30xy. (Folium)

6. Find the equations of the tangent and the normal to the curve

at the point where it cuts JT-axis. (Delhi 1948)

7. Show that the line

x cos O+y sin /?=0,

touch the curve

if

sinn ^.

(P.I/. 7957)
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8. Tangent at any point of the curve Oc/a)l +(ylb$ =1 meets the co-
ordinate axes in ,4 and Show that the locus of the point with (OA, OB) as
co-ordinates is

x*/a
2+y li

/b
2= 1

9. Show that the tangent at any point x, y) on the curve

ym=axm-l
-\-x

in
t

makes intercepts

ax , ay
and -

(m \)a+mx m(a-\-x)

on the co-ordinate axes.

10. Prove that the sum of the intercepts on the co-ordinate axes of any
tangent to

is constant.

11. Prove that the portion of the tangent to the curve

a y

intercepted between the point of contact and A'-axes is constant.

12. Show that the normal at any point of the curve

x=acos Q+aQ sin 0, ya sin QaQ cos

is at a constant distance from the origin.

13. Show that the length of the portion of the normal to the curve

x=a(4 cos3 3 cos 0), y=a (4 sin3 09 sin 0)

intercepted between the co-ordinate axes is constant.

14. Show that the tangent and the normal at every point of the curve

fl fl

x=aeu
(sin 0-cos0), y=ae

u
(sin + cos 0)

are equidistant from the origin.

15. Show that the distance from the origin of the normal at any point of
the curve

x=ae^ (sin i0 1-2 cos 0), y=ae^ (cos i0- 2 sin 10)

is twice the distance of the tangent,

16. Show that the tangent at any point of the curve

x= a(/-f sin t cos /), >>=c(l-f-sin /)
2
,

makes angle i (* + 2/) with A'-axis.

17. Tangents are drawn from the origin to the curve v=sin x. Prove that

their points of contact lie on xY=x2-/. (D.U 7955>

18. If

p~ x cos 0+y sin 0,

touch the curve

prove that

pn= (tfCOS

(P.U. 1941 ; D.U. 7955)
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The tangent at any point on the curve x3 +y*=2a* cuts off lengths p and
7tm die co-ordinate axis ; show that

20. The tangent at any point P(xv y^) of the curve

y=x* x3

nusefcs it again at g . Find the co-ordinates of the mid-point of PQ and show
chat its locus is

y=l-9x -\-2Zx* ~28x*. (B.U.)

21. Prove that the distance of the point of contact of any tangent to

2amxym~~i =zy2in a2m t

from the origin as the segment of the -Ac-axis between the origin and the

tangent.

22. Show that the normal to the curve

at (0, 3) is tangent at the two points where it meets the curve again.

23. Show that the tangent to the curve

at ( 1, 1) is also a normal at two points of the curve.

12-2. Angle of intersection of two curves.

Def. The angle of intersection of two curves at a point of
intersection is the angle between the tangents to the two curves at that

point.

Examples

1. Find the angle of intersection of the parabolas

/>

and

at the point other than the origin.

We have

or

. x=0 and

Substituting these values of x in (#), we get

>=4a^ for x=

Therefore (0, 0) and (4a*6
f

, 4a*b*) are the two points of

intersection.
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Differentiating (i), we get

2ydyjdx=4a or dy/dx=2a/y.

Therefore, for the curve (/),

(dyfdx) at 4(0M, 40M) =^12$.

Differentiating (//), we get

n ^L ^V t/y x
2x=46 -~- or -/= !-

t/x dx 26

Therefore, for the curve (//),

(dy/dx)Q,i (4a%$, 4a^) =2a*/A*.

Thus, if /, wi
;

be the slopes of the tangents to the two curves,
we have

The required angle

ft^

2. JF/w/ //?e condition that the curves

should intersect orthogonally.

Let (x
r

, y') be a point of intersection so that we have

or

Differentiating the first equation, we get

v dy ax

. =_
dx](x', y')~ by"
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Similarly for the second curve

*L1 __.
G

For orthogonal intersection, we have

ax'
0ijc'__

by'
*

hy'
~~~~

'
l 'e ' 9

aa
^
x

Substituting the values of x', y' in (/), we obtain

*-. _r L. \
J

**._.. !' r=0

or

/.*.,

b bl a a^

as the required condition.

Exercises

1. Find the angle between

(/) x2-/=a2 and x2+/=a^2. (P.C7. 7955)

(//) ^=ax and ^-f-^^

2. Prove that the curves

interesect at tan" 1
(88/73) at {3a, -2a).

3. Find the condition for y=mx to cut at right angles the conic

ax*+2hxy+by*=l.
Hence find the directions of the axes of the conic.

12*3. Lengths of the tangent, normal, sub-tangent and sub-

normal at any point of a curve.

Let the tangent and the normal at any point (x, y) of the curve

meet the A'-axis at Tand G respectively. Draw the ordinate PM.

Then the lines TM, MG are called the

sub- tangent and sub-normal respectively.

The lengths PT, PG are sometimes
referred to as the lengths of the tangent
and the normal respectively.

Clearly

Also

dy
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From the figure, we have

(i) Tangent ^TTWMPcosec ^=

(
/i

) Sub-tangent=TM= A/P cot ^= y -=? .

(/'//) Normal=GP==MP sec /r=

-V
dv

(iv)
-

.

Exercises

1. Prove that the sub-norrral at any point of the parabola

y*=4ax
is constant.

2. Show that the sub-normal at any point of the curve

y*x
2 =a*(x*-a2

)

varies inversely as the cube of its abscissa.

3. Find the length of the tangent, length of the normal, sub-tangent
and sub-normal at the point 0, on the four cusped hypocycloid

x=a cos 3
0, y-=a sin3

0.

4. Show that the sub-tangent at any point of the curve

^m yti
_.Qrn+n

varies as the abscissa. (Banaras}

5. Show that for the curve

x=a+b log [ + V( &'->>)] -V(6
a
->'

2
),

sum of the sub-normal and sub-tangent is constant. (P.C/. 1938}

6. Show that for the curve

the product of the abscissa and the sub-tangent is constant.

7. Show that the sub-tangent at any point of the exponential curve

is constant.

8. For the catenary

y-c cosh U/c),

prove that the length of the normal is v
2
/c. (P-U. 1941}

9. Prove that the sum of the tangent and sub-tangent at any point of

the curve
* /< =*-<!.

varies as the product of the corresponding co-ordinates.

10. Show that in the curve

y=a log U2-0a
),

the sum of the tangent and the sub-tangent varies as the product of the co-

ordinates of the point. [Compare Ex. 9 above]. (D.U. 1952}
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12*4. Pedal equations or p, r equations.

Del A relation between the distance, r, of any point on the

wrvefrom the origin (or pole), and the length of the perpendicular* p,
from the origin (or pole) to the tangent at the point is called pedal equa*
lion of the curve.

12-41. To determine the pedal equation of a curve whose Car-
tesian equation is given.

Let the equation of the curve be

Equation of the tangent at any
point (X, y) is

Y-y=f'(x)(X-x)
or

y>

Fig. 85.

If, p }
be the length of the perpendi-

cular from (0, 0) to this tangent, we
have

y-xf'(x)

Also

r*=x*+y2
. ...(Hi)

Eliminating x
t y b3twe3n (/), (il) and (m), we obtain the

required pedal equation of the curve (/).

Example

Find the pedal equation of the parabola

Tangent at (x, y) is

Y-y^-.(X-X)
or

The length, p 9
of the perpendicular from the origin to the

tangent (/') is given by

<

ISO
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From (//) and (///), we obtain

which is the required pedal equation.

Exercises

1. Show that the pedal equation of ellipse

;
- j 4 1

-
;; . IP.*. 1955)

2. Show that the pedal equation of the astroid

x=a cos 3
0, y=a sin 8

0,

is

3. Show that the pedal equation of the curve

A' 2a cos Q a cos 29, ;y=2a sin -a sin 20,

43

9(/-
2

-^)=8//-.

4. Show that the pedal equation of the curve

x^--ae (.sin cos 0),,)'=^ (sin + cos 0),

is

r= V2p.

5. Show that the pedal equation of the curve

x=a (3 cos 0-cos 3
0), y=a (3 sin 0-sin 8

0),

as

3/>
2
(7fl

s -^) s=(10fl
8-r) a

.

6. Show that the pedal equation of the curve

<*(*' f>')=**>'.

is

l/P*+3/r'=J/r
s

.

Section II

Po/^fr Co-ordinates

12-5. Angle between radius vector and tangent.

Let P(r, d) be any given point on the curve.

Take any other point Q(r+8r, 6+80) on the curve. Produce

OP to L.
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Let PT be the tangent at P and let ^LPT=
Let Z_PQ=a so that ^_

limit of a as Q -> P. We have

Also

=<> is the

Applying the sine formula to the

"\ we get

Fig. 86

OQ
OP

sin
=

sin

or

r

8r

sin (TT a) sin a

sin (a 80) sin (a 80)
*

_ sin a

r
"""

sin (a 8^)

sin a sin (a 8

sin (a 89)

= 2 cos sin
se

2 sin

or

or

1
t
5r =cpsJa-4S0) ^

sin

r

'

80
~~

sin (a -80)
'

Let Q -* P so that 80 -> 0, 8r --> 0, and a

Therefore

1 dr __ cos (^

r dti

~~
sin <

"

. ,

tan cj=r ^r dr

Cor. Angle of intersection of two curves. If <^, <
2

be angles
between the common radius vector and the tangents to the two curves
it a point of intersection, then their angle of intersection is

i #1-*, i

Note. Precise meaning of <p. For a point P of the curve,

q> is precisely defined to be the angle through which the positive direction
of the radius vector (/.<?., the direction of the radius vector produced) has to
rotate to coincide with the direction of the tangent in which 9 increases. The
direction of the tangent in which, 0, increases is taken as the positive direction
of the tangent.
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Examples
1. Show that the radius vector is inclined, at a constant angle to

the tangent at any point on the equiangular spiral

Differentiating (i) w.r. to 6, we get

dr , hfi i - dO

do
* ,,'

dr
-

b

tan <= , ,

or <i= tan"1
,

,

b

which is a constant. This property of equiangular spiral justifies the

adjective 'Equiangular'. [Refer il'66, p. 252]

2. Find the angle of intersection of the Cardioides

r=fl(l+eos 0), r=6(l - cos 6).

Let P (rt , OJ be a point of intersection. Let
<^ 1 ,

<
2
be the angles

which OP makes with the tangents to the two curves.

For the curve r=a(l +cos 0) we have

dr - - *

or

dO __ _a(i+cos0) 2Ujos* 0/2 ____
*

dr a sin
~~

2 sin 6]"2.GOs 0/2
"~

2

tan

or

/ ,1T /) \

=tan
(

- + \
\ *^ ** /

Hence

^i=*f + 2

For the curve r=6 (I cos 0), we have
dr _ b

.

'd9~~
8m '

or

t/0 fe(l cos0) ,

tan cA= r
t

=-- -.
- --tan .Y dr b sin 2

Hence
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Therefore,^^ -Tr/2 and hence the curves cut each other afc

right angles.
Exercises

1. Find for the curves

(i) r=0(l cos 0)- (Cardioide). (11) rm=a rn cos m 6-

(Hi) 2alr=*\ -f cos 0. (Parabola) (/v) r
m-am (cos m$ + sin wifl).

2. Show that the two curves

r
a=a2cos 20 and r=a(l-f cos 0)

intersect at an angle 3 sin- 1
(3/4)*.

3. Show that the curves rm=am cos mfl, r
w- w sin cut each other

orthogonally.
4. Find the angles between the curves

(i) r=aO, rS=a ; (//) r=flfl/(l + 0), r=-0((l-f
2

) ;

(Hi) Y=a cosec
2

(0/2), r=6 sec
2

(0/2) ;

(iv) r=alog0, r-0/log0 ; (v) r
2 sin 20-4, r

a- 16 sin 20 ;

(vi) r=ae , re
19

=ft.

5. Show that in the case of the curve r=a (sec 0-J-tan 0), if a radius

npp' be drawn cutting the curve in P and P' and if the* tangents at P, P'

meet in T, then TP= IT'. (Af-C/.>

6. Show that the tangents to the cardioide

r^=(l+cos 0)

at the points whose vector ial angles are rr/3 and 2^/3 are respectively parallel and

perpendicular to the initial line.

7. The tangents at two points P, Q lying on the same side of the initial

line of the cardioide r=a(H-cos 0), are perpendicular to each other ; show that

the line PQ subtends an angle n/3 at the pole.

B Show that the tangents drawn at the extremities of any chord of the

cardipide r=a(l-f cos 0) which passes through the pole are perpendicular to

each other.

9. If two tangents to the cardioide r-=<i(i + cos 0) are parallel, show that

the line joining their points of contact subtends an angle 2"/3 at the pole.

10. Show that

(Agra 1952}

126*. Length of the perpendicular from pole to the tangent.

From the pole O draw OY perpendicular to the tangent at any point

P (r e) on the curve r=/(0) ;
Y being its foot.

*

Let OY^p
From the &OPY, we get

p . .r
- =sin

<f>

r

or

p=r sin <,

which is a very useful expression for p.

We now express, p, in terms of the co~

ordinates r, and the derivative of, r, w.r. to

9. We have
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j
dO

tan cfc=?r -~j-

271

v-*7\*
which we can write as

1
__r

2

+(dr/d0)_ 11 /dr_\
2

Yet, another form of p will be obtained, if we write

r=l/,
so that

dr 1 ^
^ ~"~

w2
</6i

'

Substituting these values in (//), we get

12 7. Lengths of polar sub-tangent and polar sub-normal. Let
the line through the pole 0, drawn perpendicular to the radius

vector OP, meet the tangent and normal at P in points T and G
respectively.

Then, OT, OG are respectively called the polar sub-tangent and

polar sub-normal at P.

From the &OPT, we get

OT
OP=tan

or

Hence polar sub-tangent
d^ d# .

=rz
,- = j where w=
dr du

From the A^PG, we get

= cot ^,

or

OG=OP cot <A

Fig. 88.

Hence, polar sub-normals
du , 1

~A* where w=
dtf r
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Note. The lengths PT and PGara sometimes called the lengths of the

polar tangent and polar normal at P. We have

/>r=OPseccp=rV[l-ftan
2

q>]=r/\/rH-r
a

('

* VI

PG=OPcosec<p=rV[l+cot
8

<p]=<\/r r
2
-f (

-fa ) 1.

12-8. Pedal equations. To obtain the pedal equation of a curve
whose polar equation is given.

Let

r~f(6) be the given curve. ...(/)

We have

1 1 1 fdr- -

Eliminating 6 between (i) and (//), we obtain the required pedal
equation of the curve.

The pedal equation is sometimes more conveniently obtained

by eliminating 6 and
<f>
between (/) and

dQ
tan <=/ ,r dr '

p=r sin <.

Exercises

1. Show that for the curve

the length of polar tangent is constant.

2. Prove that for the curve

the polar sub -tangent is constant.

3. Show that for the spiral r a9, the polar sub-nDrmal is C3nstant.

4. Find the polar sub-tangent of

(/) r-a(H-cos0). (Cirdioide) (i7) 2^/r^=l +e cos Q. (Conic)

(Hi) r~a0 2
1(0-1).

L/)2

5. Show that for the curve : rae *
.

V
pol^r sub-normal .

2

polar sub-tangent
varies as 9 '

6 . Find the polar sub-normal of

(/) r=aje ; (//) r=a+b cos Q.

1. Find p for the curve
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8. Find the pedal equation ofr
m=am cos m0.

Logarithmically differentiating, we get

. , -=~-m tan/n 9

dQ= r -. -=-cot w0= ta

or f^
Thus p-r sin p=r (sin Jfi-}-m0)=r cos m9.

mm P
or

which is the required pedal equation.

9. Find the pedal equations of

(iV) //r- 1 -j <? cos 0- (iv) r= o0.

(v) r-ci(Mcos0). (v/) r--asin/ii0.

(v) r(l-sinj0)
2

a. (viii) r^-a + bcos$

(ix) r
m=um sin mO~\ bm cos iwfl.

10. Prove that the locus of the extremity of the polar sub-normal of the
curve r=/(0) is the curve

r=-/'lfl-l").

Hence show that tlie locus of the extremity of the polar sub-normal of

the equiangular spiral r a?
w^

is another equiangular spiral. (P.U. 1940)

11. Prove that the locus of the extremity of the polar sub-tangent of the
curve

-

!

r
4/(0)--0

it

u /'(R4 0).

Henoe show that the locus of ttie extremity of the polar sub-tangent of
the curve

r (H tan 10)/(m f-wtan 10)
is a cardioide.

( Allahabad 1943)
12. Show that the pedal equation of the spiral r=^a sech is of the

form



CHAPTER XIII

DERIVATIVE OF ARCS

13*1. On the meaning of the lengths of arcs. The intuitive

notion of the length of an arc of a curve is based upon the assumption
that it is possible for an inextensible fine string to take the form of
the given curve so that we may then stretch it along the number
axis and find out the number which measures its length.

This assumption, which is not analytical, cannot be the basis

of analytical treatment of the subject of lengths of arcs of curves.
Also to define lengths of arcs analytically is not within the scope of
this book.

Hence we have to base our treatment on an axiom which con-

cerns the numerical measure of lengths of arcs and we now proceed
to give it.

Axiom. If P, Q, be any two points on
a curve such that the arc PQ is throughout its

length concave to the chord PQ, then

Chord PQ<arc PQ<PL+QL 9

where PL and QL are any two lines enclosing
the curve.

Fig. 89

An important deduction from the axiom. If P, Q be any two

points on a curve, then

,. arc PQlim .
-

rfxs= l.

Q-+P chord PQ
To prove it. we take Q so near P that the arc PQ is everywhere

concave to the chord PQ.
Let PL be the tangent at P.

Draw i/)

QLPL. A*
Let /_LPQ=a. ;

we have
chord PQ <arc PQ<PL+LQ,

or

chord

chord PQ

^ PQ

,
.

cc+sm a.
Fig. 90

274
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Let Q -* P so that chord PQ tends to the tangent PL as its

limiting position and a -> 0.

From (/), we get

arcPQ

_^ ^ chord PQ
~~

'

for
^^*

(cos a+sin a) > 1 as a -> 0.

13-2. Length of arc as a function. Let y=f(x) be the equation
of a curve on which we take a fixed point A.

To any given value of x corresponds a value of y, viz. 9 f(x) ;

to this pair of number x and/(x) corresponds a point P on the curve,
and this point P has some arcual lengths 's* from A. Thus 's' is a
function of x for the curve y=f(x).

Similarly, we can see that 's* is a function of the parameter '*'

for the curve

x=f(t) 9 y=F(t), (Parametric Equation)

and is a function of for the curve

r=f(6). (Polar Equation)

13*3. Cartesian Equations. To prove that

for the curve

Let V denote arcual distance of any point P(x 9 y) from some
fixed point A on the curve.

We take another point Q(x+8x 9 yi-By) on the curve near P.

Let an arc AQ=s+Ss so that

have

or

arc PQ=Ss.
From the rt.- angled &PQN, we by

N

L M X
Fig. 91

or

fchord PQ-\* ( 8s \

L~a?cPe J
' ^J

Let Q -> P so that in the limit

' -

or ()'='+()
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We make a convention that for the curve >> =/(*), 's
r
is measur-

ed positively in the direction of, x, increasing so that, s, increases-

with x. Hence ds\dx is positive.

Thus we have

taking positive sign before the radical.

Cor 1. If x=f(y) be the equation of the curve, then- 's' is a>

function of y and, as above, it can be shown that

Cor. 2. From the right-angled A PNQ, we have

/ Aror, &* arc
cos LNPQ= pQ

=
s/

.

chor

Let
j2

-> ^ so that NPQ ->
//,

where is the angle which

positive direction of the tangent at jP'nmkes with A'-axis.

,
dx _ dx

cos d/= . 1=r J^ ds

Hence

i
dx

003 *= ds
'

Similarly, we can show that

.

,
dy

sin dt= ,r ds

13-4. Parametric Equations. To prove that

for the curve

Let *s' denote the actual distance of any point P(t) on the-

from a fixed point A of the same.

We take another point Q(t+St) on the curve. Let

be its co-ordinates.

Let

B,TC.PQ= SS.

From the A PNQ> (Fig- 91, p. 275), we get
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Bt St
'

or

/chord PQ\*( &s

1. arcPQ / ( St

Let Q -> /* so that in the limit

2 / 8y \ 2

^Uf /

It )'+(dt )*T

We measure V positively in the direction of, /, increasing so

that dsjdt ie positive. Thus

ds

dt
:

13-5. Polar Equations. To prove that

for the curve

Lot '5
s denote th'3 arcivvl length of any point P(r, J) from some

fixed point A on the curve.

We take another point Q(r+Sr, fl-f 80) on the curve near P.

Let arc AQ=s+$s so that arc PQ^bs.

Q

Fig. 92

Draw PN.OQ.
Now

JP7V/OP=sjn 85 so that PJVW sin S^.

Again

ONjOP^cos 89 so that OJV^==r cos 89.

Hence NQ^OQ-ON
= r+8r~- r cos 80

=:rl cos 80 + 8r
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From the &PNQ9
we get

Dividing by (S0)
2

,
we get

/chord PQ^ f _ 2~~^ ~~

Let Q -> P. Therefore

We measure ^' positively in the direction of Q increasing so

that dsjdff is positive. Thus

-V-2 -

Cor. 1. If 0=f(r) be the equation of the curve, then c
s' is

function of r and, as above, it can be shown that

_ . ..,,, PN r sin
Cor. 2. sin

sin 80 80 arc= T
~8lT

"

Us
*

chord PQ

Let Q -> P so that /_PQN -> ^ where, <, is the angle between
the positive directions of the tangent and the radius vector.

, , .

^ /. sm ^=r. 1.
-j~

. I

or

Again, cos

2r sin2

TQ
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2r sin2 JSj+Sr 80^ ^

arc PQ~
80

* '

S7~
'

chord PQ
sin 80

,

Sr \ 80 arc
-

8T chord

Let G -> P

i f r\ i ,

^r N do .

cos <i=( r. 0. 1+ .
)

.1r V dQ ) as

or

. dr

Exercises

1. Find t/5/d[x for the curves .

(i) y=c cosh jc/c. (//) ^==a log

(///) 3V=^5(~x). (iv) x3
=ay*.

(v) 8ay-x2
(a

2 -jc2
). (v/)

(v/i) 4^-f 2 2 logx=x2
.

2. I1 ind c/5/c/y for the curve

3. Show that ydsjdy is constant for the curve

j^jhi^jz^
2
) _i tf^^-rr)

fl

~ g >
4. Find dsldQ for the following curves, being the parameter :

(/) x=^a cos ^, y^b sin ^ (Ellipse)

(//) x=a cos 3
^, ^=sin3

^. (Astroid)

(111) x=a(9 sin ^), y=a(l-cos 0). (Cycloid)

d'v) x=ae sin 0, y=ae" cos 0.

(v) jc==fl(cos 0-f0 sin 0), y=a(sin cos 0).

5. Find dsjdB for the fo'lowing curves :

(/) r=a(l+cos0). (Cardioide). (//) r
a=fl2 cos 20. (Lemniscate)

(///) r=>ae
cot a

. (Equiangular spiral)

(iv) r=00. (v) r=a(0
8
-l).

(v/i) r
w=aw cos nt0. (Cosine spiral).

(v/ii) r
m=am (cos w0+sin w0).

6. Show that for the hyperbolical spiral r0=a,

rfr
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7. Show that r ds/dr is constant for the curve

8. Show that . .is constant for the curve
^r dr

9. If /?i and /?2 be the p^rp^ndicular^ from tlv^ origin on the tangent and
normal respectively at the point (x, y\, and if tan ^ -dy/dx, prove that

p^x sin ty~y cos ^, and /ia =.=a: cos ipi-y sin ^f ;

hence prove that

10. Show that for any pedal curve pf(r],

ds r

dr
~

V(r
2

-/?
2
)

"



CHAPTER XIV

CONCAVITY ; CONVEXITY

POINTS OF INFLEXION

14-1. Definitions. Consider a curve y=f(x) and any point

P[c,f(c)] thereon. Draw the tangent at P.

We suppose that this tangent is not parallel X-axis so that

f'(c) is some finite number.

Now there are three mutually exclusive possibilities to con-

sider :

V" Y

+X

Fig. 93 Fig. 94 Fig. 95

(/) A portion of the curve on both sides of P, however small it

may be, lies above the tangent P (i.e., towards the positive direction

of X-axis).

In tliis case \vo say that the curve is concave upwards or

convex downwards at P. (See Fig 93).

(//) A portion of the curve on both sides of P, however small
it may be, lies below tho tangent at P

(i.e., towards the negative
direction of X-axis).

In this ease we say that the curve is concave downwards or

convex upwards at P. (See Fig. 94).

(Hi) The two portions of the curve on the two sides of P lie on
different sides of the tangent at P, / e., the curve crosses the tangent
at P. In this case we say that P is a point of inflexion on the curve.

(See Fig. 95).

Thus, the curve in the adjoined

figure 06 is concave upwards at every Y

point between P
1
and P2 and concave

downwards at every point between Pa

and Po.

P
2
and P3 are the points of in- Q

flexion on the curve.

Fig. 96

281
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From these figures, it is easy to see that the curve changes the

direction of its bendingfrom concavity to convexity or vice versa as a
point, moving along the curve, passing through a point of inflexion.

This property is also sometimes adopted as the definition of a point
of inflexion.

Note. The property of concavity or convexity of a curve at any point
is not an inherent property of the curve independent of the position of axes.

Upward and downward directions, as also positive and negative directions of
y-axis, are fixed by convention and have no absolute meaning attached to
them. But this is not the case for a point of inflexion. The point where a
curve crosses the tangent is an inflexional point so that its existence in no way
depends upon the choice of axes.

14 2. Criteria for concavity, convexity and inflexion. To deter-

mine whether a curve y~f(x) is concave upwards, concave downwards,
or has a point of inflexion at P [c,f(c)].

We take a point Q[c+h, f(c+h)] on the curve y=f(x) lying near

the point P[c,/(c)].

The point Q lies to the right or left of the point P according as

h is positive or negative.

Draw QM\_X axis meeting the tangent at P in R.

The equation of the tangent at P is

y-Ac)=f'(c) (x-c),
and therefore the ordinate MR of this tangent corresponding to the

abscissa c+h is

f(c)+hf'(c).
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Also, the ordinate MQ of the curve for the abscissa c+h is-

= MQ~MR=f(c+h)-f(c)-hf'(c).
For concavity upwards at P, (Fig. 97).

MQ > MR, i.e., RQ, is positive when Q lies on either side of P.

For concavity downwards at P, (Fig. 98).

MQ < MR, i.e., RQ is negative when Q lies on either side of P.

For inflexion at P, (Fig. 99).

RQ is positive when Q lies on one side of P and negative when?

Q lies on the other side of P.

Thus, we have to examine the behaviour of RQ, i.e.,

f(c+h)-f(c)-hf'(c)

for values of, h, which are sufficiently small numerically.

By Taylor's theorem, with remainder after two terms, we have

Case I. Let /"(c) > 0.

As the value f"(c) of/"(x) is positive for x=c, there exists an-

interval around c for every point x of which the second derivative-

f(x) ia positive. (3*51, p. 54). Let c+h be any point of this-

interval. Then c+yji is also a point of this interval and accordingly

/"(-f 2A) is positive.

Also

/*
2
/2 !, is positive.

RQ >0,
for sufficiently small positive and negative values of h.

Hence the curve is concave upwards at P iff"(c) > 0.

Case II. Let f"(c) < 0.

In this case we may how, as above, that RQ < for sufficiently

small positive and negative values of h.

Hence the curve is concave downwards at P iff" (c) <0.

Case HI. Let /"(O^O fy///'"(c):0.

By Taylor's theorem, with remainder after three terms, we*
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have

h*

3 !

so that

RQ=
3* f'"(c+ e *

h
)> f r/"(c)=0.

There exists an interval around c frr every point X of which

f'"(x) has the sign of/"'(c). Let c+li be any point on this interval.

Then c-\-Q.Ji is also a point of this interval and accordingly f'"(c-{-Pji)
has the sign off"'(c)

But A3
/3 ! changes sign with the change in the sign of h.

Thus RQ changes sign with the change in the sign h. Hence
Jhe curve has inflexion at P iff"(c)^0 andf"

Case IV. Generalisation .

Let

By Taylor's theorem, with remainder after n terms, we have

f(c+h)=f(c)+hf'(c) +
**

f"(c) + + ^7! /n
~
1(C)

so that

There exists an internal around, c, such that /n
(c-f-0n/i) has tho

sign off
n
(c) or every point c4-h of this interval.

Also hnfn I changes its sign or keeps the same sign while the

sign of, /i, changes, according as n is odd or even.

Thus RQ changes sign ifrcis odd and keeps tho sign of/
n
(c), if

/i is even.

Hence if n is odd th*. curve hxs inflexion atP\ifn is even, it is

concave upwards or downwards according asfn
(c) > 0, or <0.

14-3. Another Criterion for points of inflexion. We know that

a curve has inflexion at P if it changes from concavity upwards to

concavity downwards, or vice versa, as a point moving along the curve

passes through P, i.e., if there i a complete neighhourhood of P such

that at every point on one sid^ofP, lying in this neighbourhood, the

curve is concave upwards and at every point on the other side of P
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the curve IR concave downwards. We thus see that the curve, has in-

flexion at P[c,f(c)], iff(x) changes sign as x passes through c.
'n

Note. We have already remarked that the position of the point of in-

flexion on a curve is independent of the choice of axes so that, in particular, the

positions of x and y axes may he interchanged witnout affecting the positions or
the points of inflexion on the curve. Thus the points of inflexion may also be
determined by examining dz

xldy
2
just as we examine d z

y/dx
2

. For pomts \vhere
the tangent is parallel to X-axis, i e., where dy/dx is infinite, it becomes neces-

ary to examine d*x/dy instead

14-4. Concavity and convexity with respect to a line. Let P be
a given point on a curve and, /, a straight line not passing through
P. Then the curve is said to be concave or convex at P with respect
to /, according as a sufficiently small arc containing P and extending
to both 'sides of it lies entirely within or without the acute angle-
formed by, /, and the tangent to the curve at P.

Fig. 100 Fig. 101

Thus the curve is convex to / at P in Fig. 100 and concave inr

Fig. 101.

In the noxt section, we deduce a test for concavity and convexi-

ty with respect to the X-axis.

14-41. A test of concavity and convexity with respect to the X-axis.

o

Fig. 102 Fig. 103

From the examination of the figures 97, 98 and the figures 102 r

103, we deduce the following :

(i) A curve lying above, the axis of. x (so that the ordinate y is

positive) is convex or concave wit h respect to the axis of x according
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as it is concave upwards or downwards, i.e., according a,ad*y/dx* is

positive or negative.

(ii) A curve lying below the axis of x (so that the ordinate y is

negative) is convex or concave with the respect to the axis of x accor-

ding as it is concave downwards or upwards i.e., according as d2
yl<tx*

is negative or positive.

Thus, in either case, we see that a curve is convex or concave at

.P with respect to the axis of x according as

d*y
y dx*

ds positive or negative at P.

I. Find if the curve

Examples

.is concave or convex upwards throughout.

Now
(P.U. 1932)

dy _ 1

dx
~~~

x

d*y 1
~

which is always negative.

Hence the curve is concave downwards,
i.e., convex upwards throughout.

Note. We know that y=Iog x is negative or posi-
tive according as 0<x<l or x >1. Thus for 0<x<l,
yd*yldx

2
is positive and for x>\,yd*y(dx* negative, so that

Fie 104 *ke curve is convex w.r. to x-axis if 0<x<l and concave
rig. ju^

iy.r. to a?-axis if #>1.

2. 5Aow //ra/ j=x4 is concave upwards at the origin.

We have

dx ~dx*
= 24,

that

but positive at (0, 0).

Therefore the curve is concave upwards at the origin.

3. Find the ranges ofvalues of x for which

as concave upwards or downwards*

Also, determine its points of itfft&xion.
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We have

Now,

forx<l, -V~>0 ;
forx= l "'=0;

dzv
for 1<*<2, <0; forx=2, =0,

for *>2, >0.

Thus the curve is concave upwards in the intervals [ oo, 1),

<(2, GO
] and is concave downwards in the interval [1. 2].

It has inflexions for x=l and x= 2.

Therefore (1, 19) and (2, 33) are the two points of inflexion on
the curve.

4. Show that the curve (a
2+x2)^=a2^ has three points of in-

flexion.

' Here

dy _
dx
~

2

dx*
~~a

"

*=Q for x= ^3^, 0,
-

It is easy to see that d2
y[dx

2
changes sign as, x, passes through

ach of these values. Hence the curve has inflexions at the corres-

ponding points.

Thus

(V3a, V3a/4), (0, 0), (-

the three points of inflexion of the curve.

5. Find the points of inflexion on the curve

Here, y, is the independent and, x, the deper\dei|t variable,

dx xl . 1
--3 (logy)-, .
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d'x > 1 3

2=0 if log .y=0 or log y~2,
i.e., if

=e= or

Thus we expoct points of inflexion oti the curve for J
;=l and".

e*. Again

6 121oj; Qlocry
3
~~

3
"""

3 ^~ 3

Therefore

Hence y~ I and e2
give points of inflexion, so that (0,1) and'

(8, e9) are the two points of inflexion.

Exercises

1. Show that y~ex is everywhere concave upwards.

2. Examine the curve .y^sin x for concavity and convexity in the-

interval (0, 2*).

3. Find the ranges of values of x in which the curve

is concave upwards or downwards. Also, fin 1 the points of inflexion.

4. Find the ranges of the values of x in which the curve

is concave upwards or downwards. Also find its points of inflexion.

5. Find the intervals in which the curve

y= (cos* i sin xiex

i* concave upwards or downwards ; x varying in the interval (0, 2n).

6. Find the points of inflexion the curves

(i) y--ax*-\-bx
2
+<QX \-d. . (n) y=(x* *)/(3.x

2
-f !)

(Hi) A*=^-3.y
4

4.v
3
-f 5. (iv) x-~(y~\)(y2)(y3)-

*V' y
~~a2+x2 ' Vl ' ;

"
a--j-x

2 '

(ix) xy^a* log (yla). (x) y- x2
log (

[xi) y*^x(x\-\)*. (D.U. Rons. 1947)

(xii) nyf =jcf
(fl

2
-x). (D.U. Hons. 7955)
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Also, obtain the equations of the inflexional tangents jjto the curves (it),

(7) and (xi).

1. Show that in the curve

the abscissae of the points of inflexion are h.

8. Show that the line joining the two points of inflexion of the curvs

y*(x-ay x*(x+a)

subtends an angle w/3 at the origin.

9. Find the values of, x, for which the curve

54,y=U+ 5)^-10),
has an inflexion and draw a rough sketch of the curve for -6<x<3, making the

inflexions. (MT.)j

10. Show that the curve

ay*=x(xa)(xb)
has two and only two points of inflexion.

11. Find the points of inflexion on the curves

(/) jc=0(2<9-sin 9),;y=fl(2-cos 0).

(ii) x--=a tan /, y~a sin / cos f.

; (Hi) x2a cot Q, y=^2a sin2
0-

12. Show that the abscissae of the points of inflex on on the curve

y*=f(x) satisfy the equation

[f'(x)?=2f(x)f''(x). (PV.)

13. Show that the points of inflexion of the curve

y
2
=(jf-fl)

2
(.v-6)

lie on the line

4/>. (Luckjow)



CHAPTER XV
CURVATURE

EVOLUTES

15'1. Introduction, Definition of Curvature. In our everyday
language, we make statements which involve the comparison of bend-

ing or curvature of a road at two of its points. For instance, at

times, we say, "The bend of the road is sharper at this place than at
that." Here we depend upon intuitive means of comparing the
curvature at two points provided the difference is fairly marked. But
we are far from intuitively assigning any definite numerical measure
to the curvature at any given point of a curve. In order to make
'Curvature' a subject of Mathematical investigation, we have to

assign, by some suitable definition, a numerical measure to it and
this has to be done in a way which may be in agreement with our
intuitive notion of curvature. This we proceed to do.

We take a point Q on the curve

lying near P.

Let A be any fixed point on the

curve. Let

arc AP=s,
arc AQ=s-\- 8s,

so that

arc PQ=Ss,
Let i/s i/'+St/', be the angles which

the positive directions of the tangents
at P and Q make with some fixed line.

The symbol, 8^ denotes the angle

through which the tangent turns as a

point moves along the curve from P to
Fig. 105

Q through a distance 8s. According to our intuitive feeling, 8$ will

be large or small, as compared with 8s, depending on the degree of

sharpness of the bend.

This suggests the following definitions :

(i) the total bending or total curvature of the arc PQ is defined to

be the angle 8$ ;

(//) the average curvature of the arc PQ is defined to be the

ratio 8(pj8s ;

and (ill) the curvature of the curve at P h defined to be

lim

Q->P
'"

ds

290
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Thus, by def., A/r/ds is the curvature of the curve at any point P
15-2. Curvature of a circle. To prove that the curvature oj

a circle is constant.

Intuitively, we feel that the curvature of a circle is uniform
throughout its circumference and that the larger the radius of the
circle, the smaller will be its curvature. It will now be shown that
these intuitive conclusions are consequences of our formal definition
of curvature.

Consider any circle with radius, r, and centre O.
Let P, Q be any points on the '

circle and let arc T

Also let L be the point where the

tangents PT, QT at P and Q meet.
We have

From Elementary Trigonometry

r Fig. 106

top !_

Us
""""

r

Let Q -> P so that in the limit, we have

ds
~~

r

Thus the curvature at awjy point of a circle is the reciprocal of
its radius and is, thus, a constant.

Also, it is clear that the curvature, 1/r, decreases as the radius
r increases.

15-3 Radius of curvature. The reciprocal of the curvature
of a curve at any point, in case it is =0, is called its radius o curv-

ature at the point and is generally denoted by, p, so that we have

=d-

Thus the radius of curvature of a circle at any point is equal t<?

its radius.

15-31. The expression ds}dfy for radius of curvature is suitable

only for those curves whose equations are given by means of a
relation between s and (p. We must, therefore, transform it so that
it may be applicable to other types of equations such as Cartesian,
Polar, Pedal, Tangential Polar, etc.

It may be remarked that in the case of Cartesian and Polar

equations, the fi^ed line will be taken as X-axis and initial line res-

pectively- For the curve y=f(x), the positive direction of the tan-

gent is the one in 'which, x, increases, and for r=/(0) the positive*
direction of the tang&j^ is the one in which, 0, increases.
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Ex. Find the radius of curvature at any point of the following :

(j) j=c tan i (Catenary). (//) s=4a sin
ty (Cycloid).

(///) s-4a sin ty (Cardioide). (/v) s~c log sec $ (Tractrix).

(v) sa log (tan 1^4-sec t//)fa tan ^ sec ^ (Parabola).

15*4. Radius of curvature for Cartesian Curves.

15 41. Explicit equations : y=f(x).

Now,
dy

tan \b= /-- .Y
dx

Differentiating, w.r. to s, we get

dx

But, we have

(13-3, p. 275}*

where the positive sign is to be taken before the radical.

Hence

_
~"d^

~
. d2

y
~

y2

dx2

Cor. The radius of curvature, P, is positive or negative
according as d*yjdx* is positive, or negative ie., according as the
curve is concave upwards or downwards. Also, the equation (A)
shows that curvature is zsro at a point of inflexion.

S'mss the valus of p is indspendent of the choice of X-axis and
iSi interchanging x and y we see that, p, is also gfcven by

Tfhis formula is specially useful when the tangent is perpendicular to?
K^axis in which case

L5;42. Implicit equations : f(x, y)=0.

^t points where dfjdy^fyjkQ-, we have, (JlO-94/ p. 213)
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_
<***

" .....

(/,)*

....... "

Substituting these values of dy\dx and d2
yjdx

2 in the formula
A) above, we get

the sign is + or according as fv is negative or positive,

Note.
"
The form of the formula (B) shows that the expression for p will

etain the same format points where /y^0 but/^0, The exceptional case
^hich arises for the points where fx and fv become simultaneously will be
onsidered in chapter XVII.

1543. Parametric equations : x=f(t), y=F(t).

At points where f'(t)^0 9
we have

*L_^/_>- /

dx~f'(t)' ,

"'w
(l

2
yf'(t)F"(t)-F'(t)f"(t) 1

Substituting these- values of dyjclx and d2
y/dx

2 in the formula

above, we get

Lf(t)+F'(t)]*_
' >t<l ;

vhere the sign is + or ~~
according as/'(0 is positive or negative.

Note. The formula (C) shows that the expression for, p, will retain the

ame form for the points where /'(0=0 but Fr

U)^0.

15-44. Newtonian Method. If a curve passes through the

origin and the axis of x is tangent at the origin, then

, as x ->

rives the radius of curvature at the origin.

Here we obtain the values of yl
and y% at the origin.

Now, x2
l'2y, assumes the indeterminate form 0/0 as x -> 0.

Iim -*-= Urn ^ (--)

.. 1 1= hm =
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Also, from the formula (A) of 15 41, we have at the origin

Thus at the origin where x-axis is a tangent,

<.= Um

It can similarly be shown that at the origin where Y-axis is a

tangent,

= lim
(g-).

These two formulae are due to Newton.

15-45. Generalised Newtonian Formula. If a curve passes

through the origin and X-axis is the
/ tangent at the origin, we have

X2 -4-V2 SX^ V \
lim ,~=lim[ x +-~- ]

2y \2y
^ 2 J

=lim -----

2y

= p, at the orgin.

M 'X

Fig. 107

Here, X2+J2=OP2
, is the square of the distance of any point

P(x* y) n the curve from the origin O and, j, is the distance of the

point P from the tangent X-axis at O.

Interpreted in general terms this conclusion can be stated a
follows : (see Fig. 108.)

If OT be the tangent at any given point of a curve, and

PAf, the length of the perpendicular drawn from any point P to the

tangent at O, then the radius of curvature

at O

lim
OP2

2PM'

when the point P tends to O as its limit.
M

Fig. 108

Note. It will be proved later on in 17-31, on p. 332 that the tangent

at the origin lying on a curve is obtained by equating to zero the lowest degree
terms in its equation.

Examples

1. In the cycloid

x=a(/+sin t), j;= cos t),
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prove that

P=4acos L (P.U.1944)&

We have

> dy
s t),~a sin /.

_ a sin * _ 2_8i? */ __
fc a( I +0087) 2"ooB772

'~
2

*

1 , / A
g - QPO ._ ,..__

2
8ec

2
'

rfx'

1
s

< 1 11
^sec T . --_

2a cos2 -- cos

=4a C08 .

2
_ __

4a
*

"

>
COS*

2. 5Aoif f/iar /Ae curvature of the point (3a/2, 3a/2) on

Folium x*-\-y*=Zaxy is 8^2/30.

Differentiating, we get

or xl+^^^+flx. ...(/)

Again, differentiating (/), we get

x+V [*J^.g..
Substituting 3a/2, 3fl/2, 1 for x, y, dyjdx respectively, we get

(

8V2

Hence the curvature * V . "o )

f
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3. Find the radius of curvature at the origin of the curve

It is easy to see that X-axis is the tangent at the origin.

[Refer note 15*45, p. 294]

Dividing by y y
we get

Let x - so that lim (x
2
jy)
= 2p.

x->0

0.2p+5.2p-8=0,

or p=4/5.

Exercises

1. Find the radius of curvature at any point on the curves :

(/) y c cosh (xlc) (Catenary).

(//) x-=a (cos t-l-t sin /), y^a(sin t t cos t).

(W)x% -Kyf =--fll . (Astroid) (D.U. 1953)

(iv) x^(a cos t)lt, y^=(a sin t)it.

2. Find the radius of curvature at the origin for

(//) x*y-xy*-\ -2x
2
y

(ill) 2x*'\-ly*-\-4x
2y+xy-y2

-\-2x--0. (P.U. Supp. 1939)

3. Show that the radius of curvature of any point of the astroid

x=a cos8
0, y-^a sin3

is equal to three times the length of the perpendicular from the origin to the

tangent. (Andhra 1951)

4. Show that for the curve

), >>=flsin (H cos 0),

the radius of curvature is, a, at the point for which the value of the parameter
is TT/4.

5. Show that the radius of the curvature at any point of the curve

. . t . t . , tx=tc smh cosh , y^~-2c cosh -
.

c c c

is, 2c cosh2
(tic) sinh (//c), where t is the parameter.

6. Show that the radius of curvature at a point of the curve

fi fi

x^ae *
(sin 9 cos 0), y=a?

*
(sin 0-fcos 0)

is twice the distance of the tangent at the point from the oiigio.

7. Prove that the radius of curvature at the point

( 2a, 2a) on the curve jc
f

ly=flU
i+yi

) is "~2a

8. Show that the radius of curvature of the Lemniscate

at the point where the tangent is parallel to x-axis is
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9. Prove that the radius of curvature at the point (2a, 0) on the curve

is (65)1 n/(536).

10. Find the radius of curvature for 4(xla)-4(ylb)=l at the points
where it touches the co-ordinate axes.

11. Show that the ratio of the radii of curvature at points on the two
curves

which have the same abscissa varies as the square root of the ratio of the ordi-

nal es.

12. Show that the radius of curvature at each point of the curve

#=-a(cos /-flog tan J/), y=a sin f,

is inversely proportional to the length of the normal intercepted between the

point on the curve and the X-axis.

13. Show that 3V3/2 is the least value of
|
p

j

for j?=log x.

14. Find the point on the curve y=ex at which the curvature is maximum,
and sh^w that the tangent at this point forms with the axes of co-ordinates a

triangle whose sides are in the ratio 1 : V2 : ^3. (Rajputana 1951)

15. Show that the radius of curvature of the curve given by

is least for the point x^a and its value there is 9a/lO.

16. Prove that for the ellipse

=

p, being the perpendicular from the centre upon the tangent at any point (x, y).

(P.U. 1944)

17. Prove that for the ellipse

x*la*-'ry*lb* -l,p-C>
3
/a&

where CD is the semi-conjugate diameter to CP. (Madras 1953)

18. Employ generalised Newtonian Formula to show that the radius of

curvature at any point of the ellipse x
2
/a

2
-! j

2
//>

2 -- 1 is equal to

___(normal)
3

__

(scmi-idtus rectum)
2

19. The tangents at two points P, Q on the cycloid

;c=--a(0 sin0), y=--a(\ cos 0)

are at right angles ; show that if p lf p a be the radii of curvatures at these points,

then

Pi
a
+P,

i lfa l
.

20. Find the points on the parabola y
a=8x at which the radius of curva-

ture is 7.i .
l

21. (a) Prove that if, p be the radius of curvature at any point P on the

parabola y*=4ax and S be its focus, then p
2
varies as (SP)

3
. (P-C/- 1952)

(b) Pi Pi''are the radii of curvature at the extremities of a focal

chord of a parabola whose semHatus rectum is / ; prove that

22. Show that in the curve

x=-A fl(sinh u cosh u fi/), y=a cosh3
w,

if the normal at P(x, y) meets the axis of x in G, the radius of curvature at P is

equal to 3 PG. (B.U.1954)



298 DIFFERENTIAL CALCULUS

dylds dxjd*
p~ ** -

d*ylds*
'

23. If x, y are given as functions of the arc s9 show that

also, show that

jL/^iY (
*2
y

Find p for the catenary

x=c log LS+ V(c*+s
8
)], y--

24. Show that for the curve s=f(x),

_[V~ VA / ( f^\_

25. Prove that for the curve s=cexlc>

Find p for the curve s*=8ay. (Patna, 1952)

15*46. Radius of curvature for polar curves : r=f(0).

Here we are to express ds\dty in terms of r and its derivatives

with respect to 0.

From the figure, we see that

_ _>
ds ds

_ dO di dQ~
ds
+

de
'

ds

IT
Fig. 109

Now, tan ^= -T .

860

_
, d<f> ae

'

tie
T

dff*=-
> i. I I r. tt I 77a \

r.

A. , -" _ _^V J
or TT- s

CII+-"-T"
Also

...(3,
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where positive sign is to be taken before the radical.

From (1), (2) and (3), we obtain]

f__ do

ds

dp
.

*
f

J

dr

Therefore

where

and r=

Cor. Since curvature is zero at a point of inflexion, therefore-

at a point of inflexion on a polar curve,

ra+2r1
2-rra=0.

15-47. Radius of curvature for pedal curves.

We know that //
= 6 +<f>.

Differentiating w.r. to r, the relation

/?=r sin ^,

we. have

A ,=sm +r cos

Now sin ^=r -, cos ^= .
( 13-5, Cor. p. 278)

- -

dr ~~ds

r
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. AT

Note. The relation $^0+$ is true whatever be the position of the point
on a curve and the tangent at it relative to the initial line. We can satisfy
ourselves on this point, it we examine a few different curves, keeping in view
the following conventions :

6 is the angle through which the positive direction of the initial line has
to rotate to coincide with the positive direction ot the radius vector ;

is the

angle through which the positive direction of the radius vector has to rotate to
coincide with the positive direction of the tangent which is that of, 0, increasing;
$ is the angle through which the positive direction of the initial line has to
rotate to coincide with the positive direction of the tangent.

or

For Fig. 111.

or

7

15 48. Radius of curvature for tangential polar equations. A
relation between p an'd i/>, holding for every point of a curve, is called

Tangential polar equation.

The perpendicular drawn to the

tangent at any point (x, y) from the ori-

gin makes angle, i// ?r/2, with #-axia.

Also p, is the length of this per-

pendicular.

Therefore the equation of the tan-

gent at P is

Fig. 112 o

p=sX sini/' y cos & :
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X, Y being the current co-ordinates of any point on this tangent.
Since the point P(x, y) lies on this tangent, we have

p=x sin ipy cos (p ...(/>>

which is a relation between
i//, ;;, x, y for any point on the curve.

Differentiating (/), w r. to
i//,

we get

sn

XT dx dx ds dy dy ds
Now , =-->-

-

,-,-=? cos (p, >,-= --} -TTP sin
<//

a^ rfs- dip d ds d*p
T

-

-^

=x cos ^-f^ sin i//-f p cos t//
sin

j//
/> sin ^ cos

= x cos i^+>
f sn ^.

Differentiating (//) H'.r. to
i//,

we get

dx
COS COS

= x sin
i// -f>' cos

= x sin i/^+j cos

p=x sin ip y cos
i//

or

Example

For the curve r
m=am cos md, prove that

First Method. By logarithmic differentiation, we obtain

m dr sin m 9

r
'

dO
~~~~

cos m 6

r, = -

,. = r tan md.1 dd

dV*

dr= rtn sec2 md tan rn9.

*s} rm*'Qd(fi
f

m0+r tah2
mtf.
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Hence _______
gec2 m0_ r2 tan2 mg

(See 15-46, p. 298>

ra sec8 mQ
_

r2

1

(cos mtt

Second Method. Its pedal equation, as obtained in Ex. 8,

tpage 273 is

Hence *~ r
~~dn

r.am

Exercises

1. Find the radius of curvature of the curve r=a cos H0 as a function of

.r. Also, show that at a point where r=a its values is a/( 1 + /i
2
). (P.C/.)

2. Find the radius of curvature at the point (r, 0) on each of the follow-

ing curves :

Kl+cos

3. Find the radius of curvature of the curve r=a sin n$ at the origin.

(Allahabad)

4. Prove that for the cardioide r=a(l +cos 0), p
2
/r is constant.

(P.U. 1954 ; />.(/. 1955)

5. Find the radius of curvature at the point (p, r) on each of the

following curves :

6. Find the radius of curvature for the ellipse

7. Find the radii of curvature of the curves

(/) p=a sin # cos ^.

(//) pwA'm+1) -a /(+) sin

8. Show that at the points in which the Archimedean spiral r=a$ inter-

the hyperbolical spiral rQa, their curvatures are in the ratio 3 : 1
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9. If Pi> P2 be the radii of curvature at the extremities of any chord of
the cardioide

r=a(l-fcos 0),

which passes through the pole, then

10. Find the radius of curvature to the curve r=a (1 +cos 0) at the

point where the tangent is parallel to the initial line.

11. A line is drawn through the origin meeting the cardioid

r==fl(l cos 0) in the points P, Q a*id the normals atP, Q meet in O; show
that the radii of curvature at P and Q are proportional to PC and QC.

12. Find the points of inflexion on the curves

(0 r-aJVW'-l)- (11) r
20=a2

. (See Cor. 15'46, p. 299)

13. Show that (a, 0), in polar co-ordinates, is a point of inflexion on

thecurver=0e0/(l-{-0).

14. Show that the curve r=aQn has points of inflexion if and only if, n
lies between and 1 and they are given by 0=^[/i(/i-f 1)].

fi

15. Show that the curve re =a (1+0) has no point of inflexion.

16. Prove that for any curve.

r/p=sin 9[l+<fr/</0],

where p is the radius of curvature and tan <p~rd$ldr.

17. If the equation to a curve be given in polars r=/(0) and if u*=

(PU.1951\ Delhi 1948)

e be given in pola

prove that the curvature is given by

($F+U
)

sin'? -

Deduce or otherwise prove that the curvature is given by

18. The curve r=ae" c a
cuts any radius vector in the consecutive

points PI, Pi, .............. , Pn . If Pn denotes the radius of curvature at Pn ,

prove that

_i_
log

j*.mn pn

is constant for all integral values ofm and n. (Delhi Hens. 1947)

19. Prove that in the curve

r
a-af

sin 20.

the tangent turns three times as fast as the radius vector and that the curvature

varies as the radius vector. (Delhi, 1949)

15-5. Centre of curvature for any point P of a curve is the

point which lies on the positive direction of the normal at P and is at a

distance, p, from it.

The distance, p, must be taken with a proper sign so that the
normal of /curvature lies pn the positive or negative direction of the
centre according as, p, is positive or negative.
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The positive direction of the normal is obtained by rotating the-

positive direction of the tangant (the positive direction of the tangent

to y~f(x) is the one in which x increases) through ir/2 in the anti-

clockwise direction.

X

o o

Fig. 113 Fig. 114

Fig. 115 Fig. 116

From an examination of the figures above, we see that the-

centre of curvature at any point of a curve lies on the side towards which*

the concavity is turned.

15-51. To find the co-ordinates of the centre of curvaturefor any

point P(x, y) of the curve y =f(x).

Let the positive direction of the tangent make angle, $ 9
with

X-axis so that the positive direction of the normal makes angle

\jf -j-^/2 with X-axis.

The equation of the normal is

X-x _ Y-y
cos ($ +7T/2)

""
'sin (4r +7T/2)

or

X-x
sin \p

COS

wheje X, Y are the current co-ordinates of any potrit 6nthe

mal and, r is the variable distance, of the variablepbftit (X, Y> : fir
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Thus the co-ordinates (X, Y) of the point on the normal at a

distance, r from (x, y) are

(x r sin ^, y-\-r cos ^),

For the centre of curvature,

Hence, if (X, Y) be the centre of curvature, we hare

But, we know that

=y+p cos w.

sin ^ =
1

have

;
cos

X=x ^ 1^~h~ Y=v4-
*r

Another method. If be the centre of curvature for P, we

Also,
' nrn - /ft ' *TD/1f ^

=x p sin

^LP+POcos^ T M L

=}>+P cos
</r. Fig, 117

Substituting the value of sin ^, cos ^ and p, we can obtain the

values of X and Y.

15*52. Evolute. The locus of the centres of curvature of a

curve is called its evolute and a curve is said to be an involute of its

evolute.

15-53. The circle of curvature of any point P of a curve is the

circle whose centre is at the centre of curvature G and whose radiu

The circle of curvatura Will Clearly touch the curve at Pand its

Curvature will be the same #3 thdfr of the curve.

15 54. Chord of
curvature

;

drawn in a given direction for any

point of a curve is the chord 6f fche circle of curvature through tu~

point drawn in the gaid direction. . ^
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We will now determine expressions fpr the lengths of some-

important particular cases of the chords of curvature.

(i) Let PT be the tangent and C thfr

centre of curvature for any point -Pof a curve.

We draw the circle with C as centre and
PC as radius.

PI? and PQ are chords of this circle parallel
to A'-axis and Y-axis respectively.

Clearly, /.RSP= $ ==-- /_SPQ .

Now, PR=PS sm_RPS=2p sin t//.

Thus, the chord ofcurvature \\
X-axis

=2p sin i/>.

Also, PQ=PS cos Z_S?#= 2p cos <Jr.

Thus the chord of curvature
||
Y-axis =2/ cos

i/>.

(ft") is the pole. PT is the chord
of the circle of curvature through the

pole O.

PS is the chord of the circle of

curvature perpendicular to the radius

vector OP,

Clearly TQP=<l>=:^SPQ.
/. PT=PQ sin /_TQP=:2f sin

<f>.

Thus, f/ie chord of curvature through

the pole=:2p sin
<f>.

Also, PS=PQ cos /_SPQ2p cos
<?>

Thus, the chord of curvature J_ wrf/wj vec/or=2 p co^
i//.

Examples

1. JTwrf /te co-ordinates of the centres of curvature at any point'
(*> J') /^ pcrabola y*=*ax. Hence obtain its evolute.

Differentiating, we get

Fig. 119

d*y 2a

Jf (Xy Y) be the centre of curvature .
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- (0

14-
4*2

Y=

4a*

UOX}t = ^^~. -..(>

To find the evolute, we have to eliminate x from (/) and (//).

Thus,

a

or 27^r2

is the required evolute.

2. .F/nJ //i^ evolute of thefour cusped hypocycloid
2 2

^_^ w ^, ^ ,,. v
, ..^., ^ +j;3=a?.

We can easily show that

dy d2y 1
tan ; -.-=- sec* cosec 9.

-.
sec* g coseo

sin2 cos g, ... (/)

-----
4
- -----

^ ,

sec4 cosec

=a sin3 0+3a cos2 sin 0. ... (ii)

To eliminate 0, we separately add and subtract (/), (//). There-

fore

X+ Y=a (cos 0+sin 0)
3 or (X+ 7)*=a* (cos ^-fsin 0).

X-Y=a (cos 0-sin 0)
3 or (^-7)'=^* (cos 0-sin 0)

On squaring and adding, we obtain

as the required evolute.

3. In the curve y=a log sec (x/tf), the chord of cuivature parallel

to Y-axis is of constant length.
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TT , d)> x X X
Here tan ^^-r- =tan . .'. ^= *

AI
Also, ^0= - sec*9

dx* a a

(14.tan8 xla)* x
p=a --------

9
*

.

' = a sec
sec2 x/a a

/. chord of curvature parallel to F-axis

which is constant*

X X
=2p cos i/>=2a sec cos = 2a,

Exercises

1 . Show tint the evolute of the ellipse

$ 9 y=b sin

18

2. (a) Show that for the hyperbola

ad the equation of the evolute is

(axfi -(byfi -(

(6) Prove that the evolute of the hyperbola

s

3. Shaw that the evolute of the tractrix

xa (cos f -Hog tan J/), y= sin /

it the catenary

>>=0cosh (xla).

4. IProve that the centres of curvature at points of a cycloid lie on an
equal cycloid. (P.U. Supp. 1944)

5. Show that (210/16, 210 (16) is the centre of curvature for the point
(3a/2, 3n/2) of the Folium x*+y*=laxy.

6. Show that the centre of curvature of the point P(a, a) of the curve
xi+y*=2cPxy divides the line OP in the ratio 6:1; O being the origin of
co-ordinates.

7. Show that the parabolas

j^-aHx+l. *=-;K2 -f.y-f 1

have the same circle of curvature at thQ point (1, 1).

8. Show that

is the circle of curvature of the curve

ftt the point (a/4, a/4).
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9. Find the circle of curvature at the origin for the curve

x+y=ax*+by*+c**. (Delhi Hons. 1951)

10. Show that the circle of curvature at the origin of the parabola

is

mx ). (D.U. 1955)

11. (a) Show that the circle of curvature, at the point (am
2
, 2am) of the

parabola y*=4ax9 has for its equation

x*+y*-6am2
x-4ax+4am*y=3a*m*. (D.U. Hons. 1957)

(b) Find the equation of the circle of curvature at the point (0, b) of

the ellipse
*
2 + ^= 1 (P.U. Hons. 1959)

12. Show that the radii of curvature of the curve

x==ae^ (sin cos^),^=a^ (sin 0+cos 0),

and its evolute at corresponding points are equal.

13. Find the radius of curvature at any point P of y=c cosh (x]c) and
show that PC=PG where C is the centre of curvature at P and G the point of
intersection of the normal at P with x-axis. (Allahabad)

14. Show that the chord of curvature through the pole of the equiangular

spiral r=ae
m

is 2r.

15. Show that the chord of curvature through the pole of the equiangular

spiral r=ae
^

is bisected at the pole.

16. If cx and cv be the chords of curvature parallel to the axes at any

point of the curve y=ae
x

l
a

, prove that

- {P'U' 1948)

17. If Cx and cv be the chords of curvature parallel to the axes at any

point of the catenary y=c cosh (xlci, prove that

18. Show that the chord of curvature through the pole of the cardioide

is Jr.
r=0(l cos 0).

19. Lf cr and c * be the chords of curvature of the cardioide r=o(l 4-cos 0)

through the pole and perpendicular to the radius vector, then

20. Show that the chord of curvature through the pole of the curve

rm_ fl
m C08 mQ t

is

2r/(ro4-l). (Gujrat 1952)

21. Show that the chord of curvature through the pole for the curve

is

2/(r)//'(r). (Lucknow)

22. Show that for the curve p~ae
br

, the chord of curvature through the

pole is ofconstant length.

23. For the lemniscate r2=fl2 cos 20, show that the length of the tangent
from the origin to the circle of curvature at any point is r^3/ 3. (B.U.)
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24. IfP is any point on the curve r2=a2 cos 29 and Q is the intersection
of the normal at P with the line through O at right angles to the radius vector

OP, prove that the centre of curvature corresponding to P is a point of trisection

ofPQ. (L.U.)

25. If Pis any point on the curve r=a (1-l-cos 9) and Q is the intersection
of the normal at P with the line through the pole O perpendicular to OP, prove
that the centre of curvature at P is a paint of trisection of PQ remote from P.

26. 1 he circle of curvature at any point P of the Lemniscate r2=a2 cos 29
meets the radius vector OP at A, show that

OP: AP=l : 2;
O being the pole.

27. p lf p, are the radii of curvature at the corresponding points of a
cycloid and its evolute ; prove that Pi

f+p t
8

is a constant.

28. Show that the chord of curvature through the focus of a parabola is

four times the focal distance of the point and the chord of curvature parallel to
the axis has the same length. (Rajputana 1952)

29. Prove that the distance between the pole and the centre of curvature
corresponding to any point on the curve r

w=an cos is

15-55. Two important properties of the evolute.

If (X, Y) be the centre of curvature for any point P(x, y) on
the given curve, we have

X=x p sin0, Y=y+p cos

Differentiating w.r. to X
9
we obtain

dX .

. ds dx dib . , rfp= 1 T- -=- y-- sin -=-.

dif>
ds dx * dx

dY dy
dx ^x

dy ds dy dip, , dp=
Jx-d* dsdx-+ cos +

dx,

rfp
-COS ^ fc ... (//)

From (i) and (//),

v Now, dY/dX is the slope of the tangent to the evolute at pf
and, cot </>, is the slope of the normal PP' in the original curve at
P. By (//) the slopes of two lines, which have a point P' in common,
are equal, and therefore they coincide.
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Thus, the normals to a curve are the tangents to its evolute.

Again, we square (/) and (//) and add.
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Let, S, be the length of the arc of the evolute measured from
one fixed point on it upto (X, Y) so that

Here, x is a parameter for the evolute.

dS
dx'~

dx)

dx

...(/*)

or

where, c, is constant.

Let Af
f ,
M2 be the two points on the

evolute corresponding to the points L1?

L2 on the original curve. Let plf P2 be
the values of, p, for L

l9
L2 and S

19
S2 be

the values of 8 for M
19
Afa .

Thus

i.e., arc A/,M2
=difference between

the radii of curvatures at LL9
L2 ,

Fig. 120

Thus, we have shown that difference between the radii of
curvatures at two points ofa curve is equal to the length of the arc of the

evolute between the two corresponding points.

Note. We suppose that 5 is measured positively in the direction of x, in-

creasing so that dSldx is positive. Also, dpfdx is positive or negative according
as, p, increases or decreases as x increases.

Thus

.-= T or ,

ax dx dx

according as, p, increases or decreases for the values of, x, under consideration.

Tt is easy to see that the conclusion arrived at in this section remains the

same if we consider dSldx^dpfdx instead ofdS'dx^dpldx. It should, however,
be noted that the conclusion holds good only for that part of the curve for which

p , constantly increases or decreases so that d?/dx keeps the same sign.
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Ex. Find the length of the arc of the evolute of the parabola

which is intercepted between the parabola.

The evolute is

27a^=4(x-2a)8
. (Ex. 1, p. 30)

Let L, M be the points of intersection of the evolute LAM
and the parabola.

To find the co-ordinates of the points
of intersection L, M, we solve the two

equations simultaneously.

We get
07/7 A /ry -- A.("Y ---- ft/r\*^^ *i I C* ^IM^V -*1 *\^^ AC*y y

X *

Now, 8a, fl, a are the roots of

this cubic equation of which x=Sa is the

Fie 121

*
only admissible value ; a being negative.

/. (84','4\/2a), (8a, 4^20) are the co-ordinates of L, M.

If(Xt Y) be the centre of curvature for any point (x, y) on the

parabola,/we have

X^3x+2a, Y=y3
I4:a*. (Ex. 1, p. 306)

/

/Thus A(2a, 0) is the centre of curvature for O(0, 0) and

L(8<t, 4\/2a) is the centre of curvature for P(2a, f

The radius of curvature at/?= 0.4=20.

The radius of curvature at P=PL=(

/; arc

Hence the required length Af4L=4a(3v'3 1).

Ex. 2. Show that the whole length of the evolute of the ellipse

Ex. 3. Show that the whole length of the evolute of the astroid

x~

it 120.



CHAPTER XVI

ASYMPTOTES

16-1. Definition. A straight line is said to be an Asymptote of
an infinite branch of a curve, if, as the point P recedes to infinity along
the branch, the perpendicular distance of P from the straight line-

tends to 0.

Illustration. The line #=a is an asymptote of the Cissoid

y\a-x)=x*. (Seell-41>

It is easy to see that as P (x, y) moves to infinity, its distance

from the line x--a tends to zero.

Ex. What arc the asymptotes of the curves

j>=tan x ; ,y=cot x ; .y=sec x and >>=cosec x.

16-2. Determination of Asymptotes. We know that the equation
of a line which is not parallel to X-axis is of the form

ymx+c. ...(/>

The abscissa, x, must tend to infinity as the point P(x, y}
recedes to infinity along this line.

We shall now determine, m, and, c, so that the line (i) may be

an asymptote of the given curve.

M
X

Fig. 122 Fig. 123

Ifp=MPbethe perpendicular distance of any point P(x,
on the infinite branch of a given curve from the line (/), we have

v mx c

p -> as x -> oo .

lim(>>~mx c)=0,
which means that, when x ->oo .

313
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Also,

lim (yl* w)=lim (y mx). lim l/x=c. 0=0
or

lim (yly)~m,
-when x -> oo.

Hence

m= lim (y/x), c= lim (y mx),
X -> oo X -> oo

We have thus the following method to determine asymptotes
which are not parallel to j>-axis :

(/) Find lim (yjx) ; Jet lim (y/x)~m.
X - oo x - oo

(11) Find lim (ymx) ;
let lim (ymx)^c.

X - oo
.

X -> oo

Then y=mx+c is an asymptote

The values of y will be different according to the different

branches along which -Precedes to infinity, and so we expect several

values of lim (yjx) corresponding to the several values of y and also

several corresponding values of lim (y mx). Thus a curve may have
more than one asymptote.

This method will determine all the asymptotes except those

whiah are parallel to 7-axis. To determine such asymptotes, we
start with the equation x^my+d which can represent every straight
line not parallel to A'-axis and show, that when y -^ oo

m^lim (xjy) and d~]im (xmy).
The asymptotes not parallel to any axis can be obtained either

way.

Ex. 1. Examine the Folium

for asymptotes.

The given equation is of the third degree.

To find lim (y/x), divide the equation (/) by Xs
,
so that

x J xx
Let Jc - oo. We then get

l-[-m
3=Oor (m+l)(/n

2 m+l)~Q.

The roots of w2 --m+ 1=0 are not real.
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To find lim (y mx) when m = l, i.e., to find lim (y+x), we

puty+xp so that, /?, is a variable which -> c when x -> oo .

Putting p x for y in the equation (i), we get

or

which is of the second degree in x.

Dividing by x2
, we get

Let # -* oo . We then have

3(c+a)=0 or c= a.

Hence

>>= x a or .*+}>4-0=0,

is the only asymptote of the given curve.

If we start with x=my-\-d, we get no new asymptotes. Thus

is the only asymptote of the given curve.

Ex. 2. Find the asymptotes of the following curves :

(i)

(ill)

16*3. Working rules for determining asymptotes. Shorter

Methods. In practice the rules obtained below for determining

-asymptotes are found more convenient than the method which in-

volves direct determination of

lim (yjx) and lim (ymx).

Firstly we shall consider the case of asymptotes parallel to the

co-ordinate axes and then that of oblique asymptotes.

16-31. Determination of the asymptotes parallel to the co-ordi-

nate axes.

Asymptotes parallel to Y-axis.

Let

x^k ..(t)

be an asymptote of the curve, so that we have to determine k.

Here, y, alone tends to infinity as a point P (x, y) recedes to

infinity along the curve.
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The distance PM of any point P(x, y) on the curve from the-

line (t) is equal to x k.

lim (x fc)=0 whenj> - oo
,

or

lim #=fc when y - oo
,

which gives fc.

Thus to find the asymptotes parallel to*

Y-axis, we find the definite value or values fcr
fc
2 , etc., to which x tends as y tends to oo .

Then x=fc,, x=k2 ,
etc. are the required

asymptotes.

Fig. 124 We will now obtain a simple rule to

obtain the asymptotes of a rational Algebraic
curve which are parallel to F-axis. .

We arrange the equation of the curve in descending powers of

y, so that it takes the form

where

are polynomials in x.

Dividing the equation (i) by y
m

,
we get

Let y -> oo . We write

lim x=k*
The equation (ii) gives

so that, fc, is a root of the equation <(x)=0.

Let fe
lf

fc
2 etc., be the roots of <j)(x) =0. Then the asymptotes?

parallel to 7-axis are

x~kl9
x=fc2 ,

etc.

From algebra, we know that (x fc,), (x fc
2 ), etc., are the

factors of ^(x) which is the co-efficient of the highest power y
m of y

in the given equation.

Hence we have the rule : The asymptotes parallel to Y-axis are

obtained by equating to zero the real linear factors in the co-efficient of
the highest power of, y, in the equation of the curve.

The curve will have no asymptote parallel to F-axis, if the

co-efficient of the highest power of, y, is a constant or if its linear

factors are all imaginary.

Asymptotes parallel to X-axis. As above it can be shown that

the asymptotes, which are parallel to X-axis, are obtained by equating
to zero the real linearfactors in the co-efficient of the highest power of>

x, in the equation of the curve.
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16-32. To determine the asymptotes of the general rational

algebraic equation

where, Ur , is a homogeneous expression of degree, r, in x, y.

We writo Ur in the form

where <f>,(ylx) is a polynomial in y\x of degree, r, at most,

So we write (i) in the form

x
"+-("x )+*""*-' ()+*"<* (i )+

Dividing by x*, we get

On taking limits, as x-^oo
,
we obtain the equation

which determines the slopes of the asymptotes.

Let m
l
be one of the roots of this equation so that

We write

Substituting this value of yjx in ('), we get

Expanding each term by Taylor's theorem, wo get

..(wJ+^-f..,(111,)+., . .

]
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Arranging terms according to descending powers of x, we get

Putting ^n(m,)=0 and then dividing by x"-1
, we get

- -K . . . =0

Let x - oo . We write lira />!=!. Therefore

or

Therefore

is the asymptote corresponding to the slope WA ,
if ^(

Similarly

are the asymptotes of the curve corresponding to the slopes w2 , m#
etc., which are the roots of ^n(m)=0, if

<f>'n(m2 ), ^'n(w3 ), etc., are-

not 0.

Exceptional case. Let ^(m,) =0.

If ^'n(m,)=0 but ^-1(^1)^0, then the equation (vi) does not

determine any value of c
l and, therefore, tho/e is no asymptote cor-

responding to the slope mv
Now suppose

#'n('i)=-0=^ fl_ 1(m 1 ).

In this case, (vi) becomes an identity and we have to re-

examine the equation (v) which now becomes

On taking limits, as x -> oo , we see that q is a root ofthe equa-
tion

'

which dejf'ermines two values of c,, say c,', c,", provided that
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Thus

y=m,x+c/, y-
are the two asymptotes corresponding to the slope w

l
. These are-

clearly parallel.

This is known as the case ofparallel asymptotes.

Important Note. The polynomial J n(m) is obtained by putting
x=l andy=m in the highest degree terms xn

<f>n(ylx), and
<f>n-i(tn),

^n-2 (m) etc -> are obtainedfrom xn^1
^n -

1(^/x), xn~^n^(yjx), etc., in a'

similar way.

Fxunples

1. Find the asymptotes parallel to co-ordinate axes, of ther

curves :

(i) (x
2
+>>*)* --tfy*-=0. (//) jcy-d*(jt+y)=<).

(i) The co-efficient of the highest power y
1 of y is x a. Hence

the asymptote parallel to y axis is xa 0.

The co-efficient of the highest power x3 of x is 1 which is a con-

stant. Hence there is no asymptote parallel to x-ax is.

(//) The co-efficient of the highest power y^ of y is x2 a2
.

Also,

rfence

x a=Q, x+a~
are the two asymptotes parallel to }>-axis.

It may similarly be shown that>> #~0, y 4-^=0 are the two-

asymptotes parallel to x-axis.

2. Find the asymptotes of the cubic curve

2x3 x2^ +2xy* +y* 4x2 +8xy 4x+ 1 =0.

Putting x=l, y=m in the third degree and second degree terras

separately, we get

<f>3(m)=2m 2m2+m3
,

The slopes of the asymptotes are given by

^3(w)=w3 2m2

or

111= -1, 1, 2

Again, c. is given by

cf 1 4i+3/ I
)+(--4+8m)~0,
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Putting m= 1, 1, 2, we get c=2, 2, 4 respectively.

Therefore the asymptotes are

3. Find the asymptotes of
x2

4y*

l m) m2
(l m)

The slopes of the asymptotes, given by <
3(w)=0, are 1, 1, 1.

To determine c, we have

i.e.,

c(~l-~2m+3m2)+(2+2m-4w2
)==0. ...(0

For w=s 1, this gives c=l and therefore, j>= x+1 is the

^corresponding asymptote.

For w=l, the equation (/) becomes 0. c+0=0 which is identi-

cally true. In this exceptional case, c, is determined from the

equation

i.e.,

(c
2
/2)(-2+6m)+c(2-8m)+l(l+m)=0.

For /w= l, this becomes

2c'~6c?+2=0, i.e., c=(3v^5)/2.

Hence y~x+(3<\/5)l2 are the two parallel asymptotes cor-

responding to the slope 1.

We have thus obtained all the asymptotes of the curve.

Exercises

Find the asymptotes parallel to co-ordinate axes of the following curves :
-

1. ytx-a^x-a^O. 2. x*y~-3x*-5xy+6y+2=Q.

3. y=xl(x*-l). 4. a2/*
2+W=i.

Find the asymptotes of the following curves :

5. x(y-x)
2=x(y-x)+2.

6. x\x-y)*-\-o?(x*-y*)=o?xy. (D.U. 1952)

1. (x~-y)*(x*+y*)-W(x-y)x*+l2y*+2x+y~0. (P.U.)

8. x2y+xy*+xy+y*+3x=Q. (P.U.)

9. (x-y+l)(x-y-2)(x+y)=Sx-l.
'

(P.U.)

10. y*-x*y+2xy*-y+l=Q. (P.U.)

11. ylx-y)
2=x+y. (B.U.)

12. ^V^2-/)2
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13. Xj>-l)
2~*2-l. (L.I7.)

14 xy***(x+y)*. (L U)
15. (x+y)(x-y)(2x-y}-4x(x-2!*)+4x 0. (L.U.)

16. xy*-x*y-3x*-2xy I y* } x~1y-\ 1 0. (L.U.)

17. 2*(>'-3)
2-3X*-l) 2

. (^ra)

18. (y~a)
2
(x

2
-a*)=x'-\ a*. (Lucknow}

19. U-f/r(x
2
-t-jty -f-^

2)-o2
JC
2

! a*:y~x).

20. y
3^SyV-x'^-SxM^-ZJOH- 3*2

i 4>-f5-0.

21. (A:-j)
2
(.v--2v)(.v-3r)---2a(A'

3-v3
)--2aV-2v)Ul>')^-0,

(DehiHons. 1950)

22. yW4
/(fl

2 -*2
). (P.U. 1955 Supp.)

Show that the following curves have no asymptotes :

23. jc^f^---^^-^). 24. y2
---x(xfl)

2
.

25. aV2
-.v\2a-JC). 26.

27. Find the equation of the tangent to the curve x3
I ^

3 --3ax2 which is

parallel to its asymptote.

28. An asymptote is sometimes defined as a straight line which cuts the
curve in two points at infinity. Criticise this definition and replace it by a
correct definition. (P.U. 1955 Supp.)

16 33. Some deductions from 16 32.

(/) The number ofasymptotes of an algebraic curve of the nth

degree cannot exceed n.

The slopes of the asymptotes which are not parallel to F-axis

are given as the roots of the equation <f>n(m)~ which is of degree n

at the most.

In casa the curve possesses one or more asymptotes parallel to

K-axis, then it is easy to see that the degree of ^ n (/w) Q will bo

smaller than n by at least the same number.

Hence the result.

(//) 77?e asymptotes of an algebraic curve are parallel to the lines

obtained by equating to zero the factors of the highest degree terms in its

equation.

Let, m, be a root of the equation ^n(^)--0, so that the line

y ^1^=0 is parallel' to an asymptote.

By elementary algebra, (y/xrn^ is a factor of
<f>n(yl*)

hence, yr^x, is a factor of xn
<f>n(ylx), i.e., t/n . Also converse!y,

we see that if, y m
xx, is a factor of Un then m v is a root of

^,(wt)
= 0.

In case the highest degree terms contain, x, as a factor, then a

little consideration will show that the curve will possess asymptotes

parallel to x=0, i.e., to .y-axis.
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(iit) Case of parallel asymptotes.

In this case, miy
satisfies the three equations

Since ^n(m) and its derivative ^'n(m) vanish for m=m
lt there-

fore, by elementary algebra, ml
is a double root of

<^n(m)~0 and

therefore, (>> /w^)
2

is a factor of the highest degree terms f/n .

Also, since m^ is a root of
<f>n _ 1(m)=0,y m

L
x is a factor of the

(AI l)th degree terras Un_v

Thus, we see that in the exceptional case of 16*32, a twice

repeated linear factor of Un is also a non-repeated factor of Un_r

There will be no asymptote with slope m
l9 if w

1
is a root of

^n(m)=0, <'n(w)=0 butw>* of ^n-i(fH)--0, i.e., if (ym^) 2
is a

factor of C/n and >> fl^x is not a factor of Un ~i-

Note. The results obtained in the paragraphs (11) and (///) above enable
us to shorten the process of determining the asymptotes as shown in the

following examples.

The first step mil always consist in factorising the expression formed of the

highest degree terms in the given equation.

Examples

1. Find the asymptotes of the Folium

The curve has no asymptotes parallel to co-ordinate axe*.

Factorizing the highest degree terms, we get

so that, y+x, is the only real linear factor of the highest degree
terms.

Hence the curve has only one real asymptote which is parallel
to the line y-\~x~ whose slope is 1.

We have, now to find, lim (y+x), when x -> <x> and yjx -> 1.

We have

In the limit, we have

y= xa
y i.e.,

is tha only real asymptote of the folium.
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It is easy to see that we could have eliminated the step (i),
and

simplified the process by saying that the required asymptote is

IBv 4-x =-Kmy+X - lim
i

when x -> oo and yjx -> 1.

2. Find the asymptotes of

-f 5x2 + 15xy flO.y
2-^ f 1 -0.

Equating to zero the co-efficient of the highest power y* of y,

we see that

4xH-10=0, i.e., 2x+5--=0,

is one asymptote.

Factorising the highest degree terms, we get

Here 2y +x is a repeated linear factor of highest degree terms,

i.e., 3rd degree. There will, therefore, be no asymptote parallel to

2y+JC~0 if (2y+x) is not a factor of the 2nd degree terms also.

But this is not the case. In fact, the equation is

x(2y -f-*)
2
+5(x +y)(x +2y) - 2y+ 1 - 0.

Therefore, the curve has two asymptotes parallel to

We have now to find lim (y+\x) when x -> x and yjx ->

Let lim (y -f Jx)=--c so that lim (2^+x) 2c.

Dividing by x, the equation becomes

In the limit,

4cM-5.2c(l-i)-2(-i)+0=0 > ...(0

or 4c2 +5c+ l=-0

r_ t i
- . C 5 ,

1.

Hence y= J^-~J and.y= Jx 1,

are the two more asymptotes.

It is easy to see that we
ified the process by sayi

(2y+xy+5(2y+x). lim (l+y/x)+ lim

It is easy to see that we could have eliminated the step (i) and

simplified the process by saying that the asymptotes are

i.e.,

(ty+x)*+5(2y+x). J +1-0 or 2(2>> fx)
2
+5(2>>+*)+2-0,

which gives

=0 and 4>>-f2x+ l=0.
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3. Find the asymptotes of

The asymptotes parallel to the two imaginary lines

are imaginary. To obtain the two asymptotes parallel to the lines

x y~Q, we re-write the equation, on dividing it by (x
2 +^2

),
an

,

1+0 ,

/jr)
t+--

--
2

We take the limits when x -> oo and yjx --> 1 . Therefore the

asymptotes are

i.e.. (x-,y)
8

i.e., .v y 2=0, x 3>-3-=0.

4. /7m/ /Ae asymptotes of

(x-y +2)(2jt- 3j +4)(4jc
- 5y +6) +5* ~fi v -4-7=0.

The asymptote parallel to x--jH-2=0 is

.* -

when .v -> x and v/x -> 1
,

, i , T f 5-6^/x-f7/x I "1

A'--v4-2fhm ,
. ---,;

'

,
---'

, ,,,,,. =0.
L^-^/^+^WC4 "" 5^-!-^) -v J

or x~^+2-0,
as the limit is zero because of the factor 1/x.

Similarly, we can show that

2x 3j>+4=0, 4x--5y -|-6-^0

are also the asymptotes of the curve.

16-4. Asymptotes by Inspection. If the equation of a curve of the

nth degree can be put in the form

where Fn_ a is of degree (w 2) a^ ///^ wort, //^ ev^r.y /me^r /ac/or of
Fn ,

when equated to zero will give an asymptote, provided that no

straight line obtained by equating to zero any other linear factor of Fn is

parallel to it or coincident with it.

Let ax+by+c=Q be a non-repeated factor of Fn . We \*rite

where Fn_ t is of degree (w 1). The asymptote parallel to

ax+by 4-0=0 is
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p
ax+by+c+lim /~^0,

fn-i

when x -> oo and y/x -> a\b.

To determine the limit (/
r
n-a/'

r
n-i)> w^ divide the numerator as

well as the denominator by xn~l and see that 1/x appears as a factor

so that jPn_ 2/Fn ^ 1
- > a* x -> x .

Thus

is on asymptote.

Exercises

Find the asymptotes of the following curves :

2. (x--i)(;c-2)(;c-Kx)+*
2 j-x+1 -0.

3. y3 -*M .y2+X9+y-X +\^Q.

4. x(y
2
~lby+2b*)^y*-3bx*+b*.

5. ^3
f6.v

2
^MlA:/--h6^4-3^4-12x^f 1 ly^-ZxfSy f-5-0. (7\l/. >

6. .x
2
(3>'^,v)MM3vfAr)(xHr)-h9^-|-6A7f9y^6x+9-0.

7. (y
2
-HA7^2x2

)
2
-}-(y

2+^-2x2
)(2>' -jc)-7/

2 -l9xy-23x2
-hx f 2/ | 3-^>.

8. x(y-3)*^.4y(x~\)*.

9. (a-}-x)
2
(/?

2
-}A'

2
)--xV

2
.

10. ><
3 -

5A-y
2 -h8^^4jc3 -3/-f 9A7 -6A'2 i2^ 2x f 1 -0.

16 5. Intersection of a curve and its asymptotes.

Any asymptote of a curve ofthe nth degree cuts the curve in (n 2)

points.

Let y =niK-\-c be an asymptote of the curve

To find the points of intersection, we have to solve the two

equations simultaneously.

The abscissae of the points of intersection are the roots of the

equation

xn
<l>n(m +clx) +x ^n-i(m +c/x) +x*-*<f>n - 2(m +cjx) + ...... -0. ...(/)

Expanding each term by Taylor's theorem and arranging

according to descending powers of x, we get
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Aay^mx+c is an asymptote, the co-efficients of xn and x*~l

are both zero.

Thus the equation (11) reduces to that "of (n 2)th degree and,
therefore, determines (ttr-2) values of x. Hence the result.

Cor, 1. The, /i, asymptotes of a curv^e of the nth degree cut it

in n(n2) points.

Cor. 2. If(he equation of a curve ofthe nth degree can be put in

the form Fn+Fn_2=0 where Fn_2 is of degree (n 2) at the most and
Fn consists of9 n, non-repeated linear factors, then the n(n2) points of
intersection of the curve and its asymptotes lie on the curve

The result follows at once from the fact that Fn=0 is the joint

equation of the, n, asymptotes. At the points of intersection of
the curve and its asymptotes, the two equations Fn=0 and
Fn+Fn_2~Q hold simultaneously and therefore at such points we have
*-=<>.

Particular cases

(i) For a cubic, n 3, and therefore the asymptotes cut the

curve in 3(3 2) =3 points which lie on a curve of degree 32 = 1,

i.e., on a straight line.

(11) For a quartic, n=4, and, therefore the asymptotes cut the

curve in 4(4 2)~8 points which lie on a curve of degree 4 2=2
i.e., on a conic.

Examples

1. Find the asymptotes of the curve

x*yxjP+xy+yP+x-y=Q (P.U. 1955)

and show that they cut the curve again in three points which lie on the

line

x+y-^0. (P.U. 1940)

The asymptotes of the given curve, as may be easily shown
are

The joint equation of the asymptotes is

i.e., x2
y-xy*-\-xy+y*-2y=Q.

The equation of the curve can be written as

Here

F^tfy
Henee the points of intersection lie on the line
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2. Show that the asymptotes of the quartic

2- 1 =0,

cut the curve in the eight points which lie on a circle.

The asymptotes of the curve are

x+2y=0,x-2iy+l=0, x-3>'=0,

so that their joint equations is

.e., x

The equation of the curve can be written as

(
X2_4^2)(X2_9^2)_|_5V2^^

Hence the points of intersection lie on the circle

3, Find the equation of the cubic which has the same asymptotes
as the curve

and which passes through the points (0, 0), (/, 0) and(Q, I).

(Delhi Hons. 1948)

We write

Fjssx
8- Gx-y+ 1 1 xv2- 6y

3

= (x-y)(x-2y)(x-3y).

Fjsx+y+1.
The equation of the curve can be written in the form /rs+jF1=0

where F% has non-repeated linear factors. Thus 7^=0 is the joint

equation of the asymptotes of the cubic.

The general equation of the cubic is of the form

or

where ax -\~by-\-c is the general linear expression.

In order that it may pass through the points (0, 0), (1, 0) and

(0, 1),
we must have

c=0,

6+6=0 or

Thus the required cubic is
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Exercises

1. Show that the asymptotes of the cubic

x9
xy

2 - 2xy -f 2x- y 0,

cut the curve again in points which lie on the line

3.v-->>---0.

2. If a right line is drawn through the point (a, 0) parallel to the asymp-
tote of the cubic (Jc a)

3 x2y=Q, prove that the portion of the line intercepted
by the axes is bisected by the curve. (C.C/.)

3. Through any point P on the hyperbola x2 /2~2ax, a straight line is

drawn parallel to the only asymptote of the curve x 3
-f-.y

3 =30;t2 meeting the curve
in A and B ; show that Pis the mid-point of AB.

4. Show that y ^x+ a is the only asymptote of the curve

A straight line parallel to the asymptote meets the curve in P, Q ; show
that the mid-point of PQ lies on the hyperbola

x(x-y)+ay---0.

5. Find the equation of the straight line on which lie three points of
intersection of the cubic

xV-jn'2 - 2r8
i 4r2

I 2xy f v I

and its asymptotes.

6. Find the asymptotes of the curve

4.x* ~13*V+V f-32xV-42.v
3 -20xa

i-74>'
2
-56v-f 4,v f 16 0,

and show that they pass through the intersection of the curve with

(D.U. Hons. 1953)

7. Find ail the asymptotes of the curve

3x3
-f 2x*y -Ix

Show that the asymptotes meet the curve again in three points which lie

on a straight line, and find the equation of this line. (D.U. Hons. 1952)

8. Find the equation of the cubic which has the same asymptotes as the
curve

x* -6x*y\ \\xy*-6y*i-x+y+\- 0,

and which touches the axis of v at the origin and passes through the point (3, 2).

(Delhi Hons. 1949, 1955)

9. Find the asymptotes of the curve

4(*H y1
)
- 17x2

>'
2-

4x(4y
2~

x*) 4- 2(;c
2 -

2)
--

,

and show that they pass through the points of intersection of the curve with the

ellipse x
a + 4/-4. (Delhi Hons. 1951, 1959)

10. Find the asymptotes of the curve

9-0

and show that they intersect the curve again in three points, which He on a

straight line. Obtain the equation of the line. (D.U. Hons. 1957)

16-6. Asymptotes by expansion. To show that

y=mx-\ c

is an asympotate of the curve

(I)
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Dividing by x
9
we have

y\x=m +C/X+A/X* -\-Blx*+C/x* + ...

so that when x *x> ,

]im(ylx)=m. ..(2)

Also from (1) we have

(y
- mx) = c +A/x + B/;t

2
-f Cj jc

8+ .....

so that when x->x ,

lini (ymx) = r. ...(3)

From (2) and (3), we deduce that

is an asymptote of the curve (1).

16*7. Position of a curve with respect to an asymptote. To find
the position of the curve

with respect to its asymptote

y=mx-\ c.

Let A^O. Let >
f

t
and >' 2 denote the ordinates of the curve and

the asymptote corresponding to the same abscissa x. We have

+....) ..(1)

By taking .v sufficiently large, we can rnako

as small as we like. We suppose that x is so large numerically that

this expression is numerically less than A. Thus, for sufficiently large
values of .r, the expression

A + B/.v + C/A"
2

|- D/.v
3 + . . . . . . (2)

lias the sign of A.

Thus if A be pjsitive, the expression (1) is positive for suffi-

ciently large values of A* so that, from (1) we deduce that when x is

positively sufficiently large, then J^ >'8 is positive, i.e., the curve lies

above the asymptote and when x is negative but numerically large,

yiy.2 is negative, i.e., the curve lies below the asymptote.

Similarly, we may deduce that if A be negative, then the curve
lies below the asymptote when, jc, is positive but sufficiently large
and lies above the asymptote when, .v, is negative but sufficiently

large numerically.

Let A=Q, B^O ;
we have

As above we can show that for numerically sufficiently large
values of x, the expression

has the sign of B.
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In this case, the curve lies on the same side of the asympotate
both for positive and negative values of x

; it will be above or below
the asymptote according as B is positive or negative.

If 5=0 and C^O, we will have a situation similar to that of
case (1).

Ex. Find the asympotates of the curve

y*=x(x~-a)(x-2a)l(x +3a),
'

and determine on which side of the asymptotes the curve lies.

We have

i= l
~2x

a a* Y i
a a

'2 Y i
3fl

-u
27aS

x ~8& .....A *~ 2?-"A 2^
+

8.v

Thus we have two values of y, viz.,

y=x3a+-l a2x ......

y=sx+3a*J-a*x ____

Therefore

y=x3a 9 y= x+3a
are two asymptotes.

The difference between the ordinate of the curve and that of

the asymptote y=x3a being

we see that the curve lies above the asymptote when x is positive

and below it when x is negative.

It may similarly be seen that the curve lies below the second

asymptote when x is positive and above it when x is negative.

It is easy to see that

*=: 3a

is also an asymptote of the curve. To find the position of the curve

relative to this asymptote, we suppose that

x= -3fl +A/y +Bjy* +C/>*+ ......

Substituting this value of x in the equation of the curve, we

have

-5*+ +
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Equating the co-efficients of like powers of y, we have

4:=0.

#:= 60a8
,
etc.

The difference between the abscissae of the curve and the

asymptote x~3tf, for the same value of y, being

which is negative whether y be positive or negative, we see that ths

curve lies towards the negative side of JC-axis.

Ex. 2. Find the asymptotes and their position with regard to the

following curves :

(Hi) x*(x-y)i >>
2-0.

16*8. Asymptotes in polar co-ordinates.

Lamma. The Polar Equation of a Line. The polar equation of
any line is

pr cos (6- a),

where, p, is the length of the perpendicular from the pole to the line and

a, is the angle which this perpendicular makes with the initial line.

Let OY be the perpendicular on the

given line
;
Y being its foot.

We are given that

0y=p; Z_

If P (r, 6) be any point on the line, we
have

Now, ~
p
= CoS /_YOP.

Fig. 125.

/>/r=cos(0 a), i.e., p=r cos (0 a),

which is the required equation of the line.

To determine the asymptotes of the curve

r/(0), ..(0

we have to obtain the constants, /?, and, ,
so that any line

p~r cos(0 a), ..(it)

is the asymptote of the given curve.
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Let P(r, ff) be any point on the curve

Draw OY J_ the line (n).
Draw PL J_ OY and PM J_ the line

Now.

(0.

(ii).

Fig. 126. =p--r cos (0-a). ..(ill)

Now r->oo as the point recedes to infinity along the curve. Let
>0

t
when r->- oo.

We have

OY-OL

Now when r

= ~ cos (6 a).

oo, PM ->> Oso that

l

>and
r r

lim cos (0 a)=0
lim (0 a)=7T/2,

0.

or

or

This gives a.

Again, p O Y is the polar sub-tangent ofthe point at which the

asymptote touches the curve, i.e., the point at inanity on the curve. This

may be seen as follows :

Join the pole O to the point at infinity on the curve i.e., draw

through O a line parallel t'> the asymptote. This line is the radius

vector of the point at oo.

Draw through O a line perpendicular to the asymptote meet-

ing it at Y. Then, by def. OY is the polar sub-tangent of the point
at infinity on the curve. ( 12-7, p. 271).

Thus

> Note Without employing the notion of the polar sub-tangent and the

point at infinity, the value of p, may also be obtained as follows :

From (///) we have, when r-> oo,

/>=lim [r cos (0-a)]

lim [r cos (e-Oi 4-*/2)l

lim

which is of the form (0/0).
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.. r orfei .. r ^i . ihm r*-j =iim ,- where ii=-
-> p L </r J L <fo J r

Hence the asymptote is

limf- *~

=- rcosf 6-Oi-f- ^

= r sin (Oi0).
where Oi is the limit of o as r-+ oo re., as ->0.

Working rule for obtaining asymptotes -to polar curves.

Change r to l\n in the given equation andfind out the limit of 9
as u -> 0.

Let
1? be any one of the several possible limits of 0.

Determine (- dOjdu) and its limit as u -> 9 and 0-+6i-

Let this limit be p.

Then

p= r sin (0i-0),

is the corresponding asymptote.

To draw the asymptote.

Through the polo O draw a line making angle (0 L |TT) with the

initial line
; on this line take a point Y such that

OY=\im(-d6ldu).
The line drawn through Y perpendicular to OY is the required

asymptote.

Examples
I. Find the asymptote of the hyperbolic spiral rd~a.

Here

a\r an so that ~> as u > 0.

Here

Since w= 0/0,

we have

dujde^lla or dOjdu^a.

Therefore

-a=r sin (00) r sin 0,

/.?., r sin d= a,

is the asymptote.
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2. Find the asymptote of the curve

__ a
r~-cos0

'

Here

"=
f
= -~(i-COS0).

When w -> 0, (
cos 0) -> so that cos

Now,

t/w 1 .

-rr= sin or , = r-d9~ a
,

du
-

sin0

de 2a . TT

and

d0 2a TT

2a / TT \
_---_r

sin^-g- J,
i.e., a-r x sm . oos

and -- =r sin
( ^ ), i.e., 4tf= r(A/3 sin + 3 cos 0),

\/3 \ o /

are the two asymptotes.

Exercises

Find the asymptotes of the following curves :

2 r= C()s 9
' r

""e-l"
"

sin8 e-fccs8
9'

3. r=o sec Q+b tan 6- (P-I/0 4. rt=o2
(sec

l e+cosec2
8).

5. r sin 20=a cos 3e. 6. 2r2=tan 20.

7. rO cos 0=0 cos 20. (P.tf.) 8. r sin /io=o. (P.C/.)

9. rn sinno=? ow . 10. r=o tan 0.

11. rologO- 12. rlogO==o.

13. r(l-e
8
)=o. 14. r(o

2-f8
)-2oO.

15. r sin 0=o*e . 16. r(Tr+0)^o^
6

.

17. Find the equation of the asymptotes of the curve given by (he

equation

ry-W+r'^/n-itoH +/t(e)-0
(P.C/. Hons., 1938)

18. Show that all the asymptotes of the curve

r tan n$a,
touch the circle

ro/fi.
19. Find the asymptotes of the curve

r cos 2o~o sin 30. (Delhi Ho*s 194%)



CHAPTER XVII

SINGULAR POINTS

MULTIPLE POINTS, DOUBLE POINTS

17-1. Introduction. Cusps, Nodes and Conjugate points. The
cases of curves considered in 11-4, p. 243 show that curves with
implicit equations of tho form/(x, j>)=0 exhibit some peculiarities
which are not possessed by the curves with explicit equations of the
form y=F(x). These peculiarities arise from tho fact that the equa-
tion f(x, y)=0 may not define, >', as a single valued function of*.
In fact, to each value of x corresponds as many values of y as is tho
degree of the equation in y, and these different values of y give
rise to different branches of the curve.

We recall to ourselves the following three curves considered in
11*4.

Fig- 127.
Fig. 128 .

(i) Origin is a point common to the two branches of the Cisaoid
(Fig. 127)

y*(a-x)=x*, ( n .

41)
and the two branches have a common tangent there.

Such a point on a curve is called a cusp.

(ii) Origin is a point common to the two branches of the Stro-
phoid (Pig. 128)

and the two branches have different tangents there.

Such a point on a curve is called a node.

335
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(Hi) ( 0,0) is a point common to the two branches of the

curve (Fig. 129)

ay*-x(x+a)*=^Q ( 11-43)

and the two branches have imaginary tangents there. There is no

point in the immediate neighbourhood of the point ( a, 0) which

lies on the curve. Here, a, is positive.

point.

Such a point on a curve is called an isolated or conjugate

Fig. 129.

17-2. Definitions.

Double points. Cusp. Node. Conjugate point. A point through
which there pass two branches of a curve is called a double point.

A curve has two tangents at a double point, one for each

branch.

The double point will be a node, a cusp or an isolated point

according as the two tangents are different and real, coincident or

imaginary.

Multiple point. A point through which there pass, r, branches

of a curve is called a multiple point of the rth order so that a curve

has, r, tangents at a multiple pDint of the rth order.

Thus a double point is a multiple point of the second order.

^A multiple point of the third order is also called a triple point. A
multiple point is also, sometimes, called a singular point.

17*3. A simple rule for writing down the tangent or tangents
at the origin to rational algebraic curves is obtained in the following
article.

17*31. Tangents at the origin. The general equation *>f rational

algebraic curve of the wth degree which passes through the origin 0,
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when arranged according to ascending powers of x and y, is of the
form

...(/),

where the constant term is absent.

Let P(x, y) be any point on the curve. The slope of the chord
<OP is y\x. Limiting position of the chord OP, when P -+ O, is the

tangent at O so that when x -> and y -> 0,

lim ()>/*) =m,
is the slope of this tangent.

From (/), we have, after dividing by x,

On taking limits, when x -> 0, we get

=0 so that m= bjb2 ,
if

Hence

ylx^-bjb*
d.e.,

b,x+b2y^Q } ...(ii)

is the tangent at the origin. This may be written down by equating
t;o zero the lowest degree (first degree) terms in the equation (i),

If&2=0but 6^0, then, considering the slope of OP with
reference to F-axis, it can be shown that the tangent retains the same
form.

Let 6^62=0 so that the equation takes the form

(c A
x2 +c2xy+w*) +(4*3

+djc*y+ ...... ) +... =0. . ...(wi)

Dividing by x* and then taking limits as x -> 0, we get
C
1 +c2m+c3m2

=-0, ...(iv)

^diich is a quadratic equation in, m, and determines as its /wo roots

the slopes of the two tangents so that the origin is a double point in

this case.

The equation of either tangent at the origin is

y=mx, ..(v)

Tvhen m is a root of (iv). Eliminating m between (iv) and (v), we
obtain

c^+CiXy+Csy^Q, ...(vi)

as the joint equation of the two tangents at the origin. This can be

written down by equating to zero the lowest degree terms in (111).

The equation (vi) becomes an identity if c
l
=c2=c3=0. In this

case the second degree terms, also, do not appear in the equation of

the curve. It can now be similarly shown that the equation of the

tangents can still be written down by equating to zero the terms of
the lowest degree which is third in this case.
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In general, we see that the equation of the tangent or tangents at

the origin is obtained by equating to zero the terms of the lowest degree
in the equation of the curve.

The origin will be a multiple point on a curve whose equation
does not, at least, contain the constant and the first degree terms*

Illustrations.

(i) The origin is a node on the curve

and x=0, y=0 are the two tangents thereat.

(ii) The origin is a cusp on the curve

and y=Q is the cuspidal tangent.

( ill) The origin is an isolated point on the curve

and axiby=Q are the two imaginary tangents thereat.

(iv) The origin is a triple point on the curve

and x=0, x=y,xy are the three tangents thereat.

Exercises

Find the tangerts at the origin to the following curves :

1. (xH;y
a
)
2 ==4fl2jty. 2. y*(a

2-x2)=x2(b-x)^

.3. (x
2+y2)(2a-x)=b2x. 4. a*(x*-y*)=x*y*.

5. (x
2+/)8=a2

(x
2
->>

2
)
2

.

Example

Find the equation of the tangent at
( 1, 2) to the curve

and show that this point is a cusp.

We will shift the origin to the point ( 1, 2). To do so we
have to write

where X, Y are the current co-ordinates of a point on the curve with
"reference to the new-axes. The transformed eqation is

or

Equating to zero the lowest degree terms, we get

-y2=0, i.e., (r-Jf)
2
==0,
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which are two coincident lines, and, therefore, the point is a cusp
and the cuspidal tangent, i.e., the tangent at the cusp with reference

to the new axes is

To find the equation of the cuspidal tangent with reference to

the given system of axes, we write

Hence the tangent at (1, 2) is

Exercises

Find the equations of the tangents to the following curves :

1. rV+x2)=*V--*2)at(a, 0).

2. (;c-2)
2=X>>-l)2

at(2, 1).

3. x*-4ax*-2ay*+40V+3aV--a4==0 at (a, 0) and (20, a).

4. Show that the origin is a node ; a cusp or a conjugate point on the
curve

y
2=ax2+ax* 9

according as, a, is positive, zero or negative. (Delhi Hons. 1950)

17*4. Conditions for any point (x, y) to be a multiple point of

the curve

f(x,y)=0.

In 10*94, p. 213, we have seen that at a point (x, y) of the
curve

/(*. y)=o,

the slope of the tangent, dy/dx is given by the equation

At a multiple point of a curve, the curve has at least two
tangents and accordingly dy\dx must have at least two values at a

multiple point.

The equation (1), being of the first degree in dyjdx, can b^
satisfied by more than one value of dyjdx, if, and only if,

/.0,/f=0.

Thus we see that the necessary and sufficient conditions for any
point (x, y) on/(x, }>)=0 to be a multiple point are that

/.(^y)=0,/w(x f y)=0.
To find multiple points (x, y), we have therefore to find the values.

of(x, y) which simultaneously satisfy the three equations



340 DIFFERENTIAL CALCULUS

17*41. To find the slopes of the tangents at a double point.

Differentiating (1) w.r. to x, we have

f*+r Ay <( f +f**y \
d?J* +J** dx +1 Jv*+J* dx~) dx

so that at the multiple point, where/y=0,/a.=0, the values of dyfdx
are the roots of the quadratic equation

In casef^tf^fy*, are not all zero andfx=Q=fv ,
the point (x, y)

will be a double point and will be a node, cusp or conjugate according
as the values ofdyjdxare real and distinct, equator imaginary i.e.,

according as ,

(/*,)
2
-/*

2
/,,

2>0, -0, <0.

If/a,

2=/art=y^
2=0 ;

the point (x, y) will be multiple point of

order higher than the second.

Example

Find the multiple points on the curve

Also, find the tangents at the multiple point.

Let /(*, y) =x4

f*(x> J>)=0 gives *=0, a, a.

fv(x* y)= gives j;=0, a.

Hence the two partial derivatives vanish for the points

(0, 0) <0,-fl), (a, 0), (fl,-n) f (-a, 0), (-a,-a).

Of these the only points on the curve are

(fl.0),(-fl,0), (0,-a).

Hence these are the only three multiple points, On the curve.

To find the tangents at the multiple points, we proceed as

follows :

First method.

We have

Since at (a, 0).

fJ
therefore, by the equation (2), the values of dy/dx at (a, 0) are given

by
a
-f8a

z= 0,
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The two values being both real, the point (a, 0) is a node. The

tangents at (a, 0) are

It may similarly be shown that the tangents at ( a, 0) and

(0, a) are

Second method. Differentiating the given equation w.r. to x,
we get,

4x3 Qay^ &a2
yyl

4a*x=0,

which identically vanishes for the multiple points.

Differentiating again, we get
12x2-

12ayy^ 6ay*y2 6a*y\
- Qa2

yy2
- 4a2 =0.

From this we see that

(/) for (a, 0), ^ =
, /.*., J

(ii) for (-fl, 0)^^=1, i>.,^
(iii) for(0, -a), ^^f, /.e., ^-
Knowing the slopes of the tangents, we can now put down their

equations.

Third method. To find the tangents at (a, 0), we shift the

origin to this point. The transformed equation is

or

The tangents at the new origin are

The tangents at the multiple point (a, 0), therefore, are

y= \/(4/3)(*-).

It may similarly be shown that

are the tangents at the multiple points ( 0, 0) and (0, a) respec-

tively.

The three mutiple points on the curve are nodes.

Exercises

Find the position and nature of the multiple points on the following
curves :

1. x*(x-y)+y*=Q. (D.U.1951}
2. y*=*x*+ax*. (D. U. \950\P. U.)

3. x*+y 2x8
+3>>

2=0. (P. U.)
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4. xy2

5. >>
2
=(jc-l)(jc--2)

2
.

6. ay*=(x-a)*(x-b)*.

7. x*-4ax*+2ay*+4a*x*-3a*y*-a*=Q.

9.

10. x*+y(y+4a)*+2x*(y-5a)*=5a*x*. (B. U.)

11. X*+2x*+2xy-y*+5x-2y=Q. (P. U.)

12. (2<y+x-fl)
2-4(l~x)5 =0. (P (70

13. (jc+>>)
8-^2>>-*+2)2=0. (P.V.)

14. (/-a^-hx^-f 30)
2==0. (P. U.)

15. xV2
=(a+}0

2
(&

2
.y
2
) ; distinguishing between the cases b^a.

(D. U. Hons. 1953)
Find the equations of the tangents at the multiple points of the

following curves :

16.

17.

18. (y-2)*=x(x-\)*.
19. Show that each of the curves

(x cos cc y sin a6)3
=c(;c sin <x.+y cos a)

2
,

for all different values of a, has a cusp : show also that all the cusps lie on a
circle.

17 5. Types of cusps. We know that two branches of a
curve have a common tangent at a cusp. There are five different

ways in which the two branches stand in relation to the common
tangent and the common normal as illustrated by the following

figures :

Fig. 130 Fig. 131

Single cusp of 1st species Single cusp of 2nd species

Fig. 132 Fig. 133

Double cusp of 1st species Double cusp of 2nd species
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Fig.

Point of oscu-inflexion

In Fig. 130, the two branches lie on the same siue of the com-
mon normal and on the different sides of the tangent.

In Fig. 131, the two branches lie on the same side of the nor-
mal and on the same side of the tangent.

In Fig. 132, the two branches lie on the different sides of the
normal and on the different sides of the tangent.

In Fig. 133, the two branches lie on the different sides of the
normal and on the same side of the tangent.

In Fig. 134, the two branches lie on the different sides of the
normal but on one side they lie on the same, and on the other on
opposite sides of the common tangent. One branch has inflexion at
the point.

It will thus be seen that the cusp is single or double according as
the two branches lie on the same or different sides of the common nor-
mal. Also it is of the first or second species according as the branches
lie on the different or the same side of the common tangent.

Examples

1. Find the nature of the cusps on the following curves :

(i) y*=x\ (ii) ^-xi^o.

(0 y=0 is the cuspidal tangent. Since x cannot be negative,
the two branches lie only on the same side of the common normal
eo that the cusp is single. See Fig. 130.

3

^gain, y=xf so that to each positive value of x correspond
two values of y which are of opposite signs and hence the two
branches lie on different sides of the common tangent and the cusp is

of first species.

(11) Two branches of >>* *4=0, are the two parabolas y x*=0
ndj>+xa =:0 which lie on different sides of the common tangent
y=0 and extend to both sides of the common normal x=0. Thus
the origin is a double cusp of first species. See Fig. 132.
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(7) Here

where the two signs correspond to the two>

x \ branches ; y~Q is the cuspidal tangent.
"^"^ Since x cannot take up negative values,

the two branches lie only on the sime side-
Fig. 135

of the common normal and the cusp, there-

fore, is single.

Now, one value of .y is always positive and, therefore, the cor-

responding branch lies above X-axis. Again

JT

QX ^> X ,
II

Thus, for the values of x lying between and 4^, the second
value of y is also positive and, therefore, the corresponding branch
lies above Y-axis in the vicinity of the origin. Thus the cusp is of
the second species.

2. Show that the curve

has a single cusp ofthe first species at the origin. (Delhi ffons. 1949}

Equating to zero the lowest degree terms, we see that the

origin is a cusp and y=0 is the cuspidal tangent.

We re-write the given equation in the form, quadratic in yy

y*-y
and solve it for y, so that

_ _.

For positive values of #, we have

*4
(2+x)

2
+4;c

3
>;c

1

(2+;c)
2

,

or

so that to positive values of x correspond two values of y with

opposite signs. Thus the two branches lie on opposite sides of x-axis
when x is positive.

> Again, we have

For values of x which are sufficiently small in numerical value,

is positive, for the same -> 4 when x -> 0.

Thus for negative values of x which are sufficiently small in
numerical value,
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is negative so that the values of y are imaginary. Thus x cannot
take up negative values.

Hence the curve has a single cusp of first species at the origin.

Exercises

Find the nature of the cusps on the following curves :

1
4 x\x-y)+y*=0. 2. x

3. x*+y*-2ay2=Q. 4. a*

5. (y~-x)
2+x'=0. 6. x'

7. x*ax*ya*x*y+a*y2=Q.
8. Examine the curve

for singularities. (Delhi Hons. 194SY
9. Prove that the curve jc

s+y 8=ax2 has a cusp of the first species at the
origin and a point of inflexion where x=a. (Lucknow Hons. 1950}

10. Show that the curve

has a single cusp at (a, 0). (D.U. 1955)

17-6. Radii of curvature at multiple points. The formula for
the radius of curvature at any point (x t y) on the curve f(x, y)~Q,
as obtained in 15-42, page 292, becomes meaningless at a multiple
point where/a. y^~0. At a multiple point we expect as many values
of, P, as its order. Of course, these values of p may not be all

distinct.

Tho following examples will illustrate the method of determin-

ing the values of p at such points.

Examples
1. Find the radii of curvature at the origin 0* the branches of the

curve

Here, 2*y*=*8
, i.e., x^Q, )>=(1/V2)* are the three tangents

at the origin so that it is a triple point.

To find, p, for the branch which touches jc=0, wa
find Iim(.y

2
/2.x). To do this, we write

p l9 .e., X=
and substitute this value of x in the given equation. Lim p^P is

the radius of curvature of the corresponding branch at the origin.
We get

or
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Let y -* so that we have 1 +a/p=0.

Thus, p, for this branch= a.

To find, p, for the other branches we proceed as follows.

Suppose that the equation of either branch is given by

J>=/(0)+x/'(0) +^1/"(0)+
....

YTe have, ere

/(0)=0.

Also we write /'(0)=p,/"(0)= <7. Thus we have

Making substitution in the given equation, we get

Equating co-efficients of x* and x*, we get

2ap*=a, p*+2apq=l.
These give

1 3V2=< =- '

for the two branches.

2. Show that the pole is a triple point on the curve

r=a(2 cos 8+ cos 30),

and that the radii of curvature of the three branches are

V3a/2, a/2, V30/2.

The radius vector, r, vanishes for the values of, 0, given by
2 cos 0+ cos 30=0,

!>.,

2 cos 0+4 cos8 03 cos 0=0,

tpr

cos (4 cos2 1)=0,

or

cos 0=0, cos 0= J, cos 0= J.

Thus, r=0 when 0=7r/3, ?r/2, 27T/3 so that the pole is a triple

point.
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We now proceed to find p. We have

/
1=a(2 sin 0-3 sin 30), r2=0( 2 cos 09 cos 30).

For 0=7r/3,

r^ y^Sa, r2=8a ;

for 0=7T/2,

r1==a r2=0 ;

or 0=27r/3,

r^ y3a, r2
= 8a.

Also, r=0 for each of these branches.

Putting these values in the formula

(r'+r,*)*

we get the required result.

Exercises

1. Show that the radius of curvature at the origin for both the branches
of the curve

is

2. Find the radius of curvature at the point (1,2) for the curve

3. Find the radii of curvature at the origin of the two branches of the
curve given by the equations

y=t-t\x=\-t 2
. (P.U.)

(For the origin /== 1, so that the two branches correspond to these two
values of /).

Find the radii of curvature at the origin of the following curves :

4. x*+y*=*3axy. (Folium).

5. JC
2-3^y-

6. jc
5+ox

7. Show that (a, 0), in polar co-ordinates, is a triple point on the curve

r=a(l4-2sin Jo),

and find the radii of curvature at the point.



CHAPTER XVIII

CURVE TRACING

18*1. We have already traced some curves in Chapters II
and XII. The general problem of curve tracing, in its elementary
aspects, will be taken up in this chapter.

It will be seen that the equations of curves which we shall trace
are generally solvable for y, x or r. Some equations which are not
solvable for y or x may be rendered solvable for r, on transformation
from Cartesian to Polar system.

18 2. Procedure for tracing Cartesian Equations.
I. Find out if the curve is symmetrical about any line. In this

connection, the following rules, whose truth is evident are helpful :

(/) A curve is symmetrical about A'-axis if the powers of y
which occur in its equation are all even

;

(ii) A curve is symmetrical about 7-axis if the powers of x
which occur in its equation are all even ;

(MI) A curve is symmetrical about the line y=x if, on inter-

changing x and y, its equation does not change.

II. Find out if the origin lies on the curve. If it does, write
down the tangent or tangents thereat. In case the origin is a multi-

ple point, find out its nature.

III. Find out the points common to the curve and the co-ordinate
axes if there be any. Also obtain the tangents at such points.

IV. Find out dyjdx and the points where the tangent is parallel
to the co-ordinate axes. At such point, the ordinate or abscissa

generally changes its character from increasing to decreasing or vice

versa.

V. Find out such points on the curve whose presence can be easily
detected.

VI. Find out points of inflexion. (It may not always be neces-

sary).

VII. Find out multiple points, if any, and their nature.

VIII. Find out the asymyplates and the points in which each

asymptote meets the curve.

IX. Find out if there is any region o?the plane such that no part
of the curve lies in it.

Such a region is generally obtained on solving the equation for

348
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one variable in terms of the other, and find out the set of values of
one variable which make the other imaginary.

X. If possible, solve the equation for one variable in terms of
the other and find out, by examining the sign of the derivative, or

otherwise, the ranges of the values of the independent variable for

which the dependent variable monotonically increases.

Important Note. The student must remember that a mere knowledge of

symmetry, asymptotes, double points, etc., will not enable him to trace a curve,
this knowledge being only piece-meal; asymptotes indicate the nature of the
curve in parts of the plane sufficiently far removed from the origin and the

tangent at any point gives an idea of the curve in the neighbourhood of the

point. To draw a curve completely, it may be necessary to solve the given
-equation for one variable, say, y, in terms of another and then to examine how
y varies as x varies continuously. For this purpose th& examination of dyfdx
proves very helpful.

Examples

18-3. Equations of the form

1. Trace the curve

We note the following particulars about this curve :

(i) It is symmetrical about both the axes.

(11) It passes through the origin andy=x are the two tan-

gents thereat. Thus the origin is a node.

(in) It meets A^axis at (a, 0), (0, 0) and ( a, 0) and meets Y-

axis at (0, 0) only. The tangents at (0, 0) and
( fl, 0) are x=a and

jt=- tf respectively.

/M dy -A-
fl

(V) r
ax

(

which becomes zero, when

fl*-2a2x2-x4=0, i.e., when x2=(-l v'2)fl
s

.

Thus the only real values of x for which dyjdx vanishes ar

(v) It has no asymptotes.

(vi) Solving the equation for y, we re-write it as

We see that, for y to be real, a2 x2 must be non-negative and

therefore, x must lies between a and a. Hence the entire curve lies

between the lines x=a and x= a.
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Conclusion. In order to trace the curve we have to connect
the above isolated facts. We proceed to do this now. The curve

being symmetrical about both the axes,
we firstly consider the part of the curve

lying in first the quadrant where x, y
are positive and

o (a.o)

Fig. 136.

A /P2

'-*V L

x=a t we see

decreases.

r When x=0, then ^=0. When
x increases, starting from 0, then y>

which is positive, also increases and

goes on increasing till x=v/
( l+y'2)^

where dyjdx=0 f i.e., where the tangent
is parallel to Z-axis. Since ,y=0 when

that when x increases from \/(l + \/2) a to fl, y

/A
<*

Fig. 137

The variable x cannot take up values greater than a, for, then,

y is not real. Thus the part of the curve in the first quadrant is as

shown in Fig. 136. The curve being symmetrical about the two axes,
its complete shape is as shown in Fig. 137.

2. Trace the curve

(/) It is symmetrical about A'-axis only.

() It passes through the origin and y
z+xz

Q, i.e.,

are the two imaginary tangents thereat. Thus the origin is an iso-

lated point.

(Hi) It meets J-axis at
( a, 0) and (0, 0) and >-axis ,at the

origin only ;
x a is the tangent at (a, 0).

(IV)

*axcP

ivhich vanishes when

Since x2 oxa2=0, i.e., whenx=J
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For x=(l \S5)aj2, which lies between a and a, y is not reaL
See (vi) below],

(v) y=(x+a) and x=a are its three asymptotes.

(vi) Since y=x*^*=x**^^>
we see that, for y to be real, jc

2 - a2 must be non-negative, i.e., must
be > a and < a.

Hence no part of the curve lies between

xa and x== a.

Fig. 138

Conclusion. The curve being symmetrical about the A" axis, we
consider the part of it lying in the first two quadrants where y is

positive so that we have

T

where we consider + or sign according as x is positive or nega-
tive.

When x= a, y=0.
* Also jc= a, is the tangent at the cor-

responding point ( a, 0).

Let JC vary continuously from a to ao . Then, since tfy/flbc

is notO for any of these values of x, and y= (x+a) is an asymp-
tote, we have the part of the curve in the second quadrant as shown
in Fig. 138.

For values of x lying between a and fl, y is not real.

Since jc=0 is an asymptote and dyjdx^Q for JC=(l+\/*>) fl/2,
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'we see that y, starting from oo
, goes on decreasing as x increases

'from a to (1 4-^5)0/2. As x increases from (l+<\/6)0/2 to oo
, y

again goes on increasing and, y=x fa being another asymptote, we
have the part of the curve in the first quadrant as shown.

The curve being symmetrical about the A"- axis, its complete

shape is as shown in Fig. 138.

We thus have the curve as drawn.

Note. The curve appears to have two points of inflexion, apparently
necessitated by the fact that the curve could not be asymptotic to the lines

y= (x+a) unless it changes the direction of its bending after leaving the point
(a, 0) where it touches x= a. In fact, by actual calculation, we see that

<-2fl, 2a/>l3) and ( 2a, -
2a/>|3) are its two points of inflexion.

3. Trace the curve

'(/) It is symmetrical about both the axes.

(n) It does not pass through the origin.

(111) It meets A'-axis at (a, 0) and ( a, 0) but it does not meet
'yaxis at any point ; x=a and ;c= a are the tangents at (a, 0) and

'.{0, 0) respectively.

_ __
' dx

~~
JC
2v (x

2^2
}'

which never becomes zero.

(0) J>=1 are the two asymptotes.

Prom 16-31. p. 319, it appear*? that x=0 is also an asymptote,
ibut it will be seen below that it cannot be an asymptote.

(vi) Writing the equation in the forms

we see that for x and y to be real, we have

jc
2 a2 > 0, i.e

,
x <a or x > a

and

1-y* > 0, i.*.,--l <y <1.

As no part of the curve lies between the lines x= fl, and
mo branch of the curve can possibly be asymptotic to x~0.

Conclusion.

Consider

>which corresponds *to the part of the curve in the first quadrant.
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. values of x lying between and a^ y is

If x=a, y=Q so that (a, 0) is a point "on thfc curve
seen above, is the tangent there.

As x increases from a onwards, y t
which is positive must con-

stantly increase
; dyjdx being never zero.

Since the line y=l is an asymptote, the part of the curve in

the first quadrant can now be easily shown.

The curve being symmetrical about both the axes, its complete

shape is as shown in the Fig. 139.

Y*

4. Trace the curve

Fig. 139

y*=(x-a)(x-b)(x-c).

We suppose that a, b
y
c are positive and in ascending order of

magnitude so that we have to consider the following four cases :

(/) a<b<c. (//) a = b<c. (in) a<b= c. (/?) a^b^c.

Case I. a<b<c.

(/) It is symmetrical about .Y-axis.

(//) It does not pass through the origin. .

(Hi) It meets A'-axis at (a y 0), (b, 0) nnd (c, 0), but it docs not
meet 7-axis

;
x=--a

t x=b, x=c are the tangents at- (a, 0), (6, 0), (c, 0),

respectively.

(iv) It has no asymptotes.

(v) When x<a, y*<0, i e., y is not real
;

whena<x<&, .y
2>0,

when b<x<c, y*<Q ; i.e.,y is not real
;

whenx>c, ^
2 <0.

Hence, no part of the curve lies to the left of the line x= a and
between the lines x=6, x= c.

(vi) As y
2 vanishes for x=a and x=fe, it must have a maximum

for some value of x between a and.&.
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(viii) As x increases beyond c, y* also constantly increases, for

each of the three factors then increases.

We have
Fig. 140

S~-2(a+b+c)(\lx)+(ab+bc+ca)(\lx*)

which -> oo &s x -> ao .

Thus the curve tends to become parallel to 7-axis as x --> oo .

Since the curve, in departing from (c, 0), where the tangent is

parallel to F-axis, must again tend to become parallel to F-axis, we
see that the curve must change its direction of bending at some

point between (c, 0) and oo
;
and as such must have a point of

inflexion.

Hence, we have the curve as shown in Fig. 140.

It consists of an oval and an infinite branch.

Case II. a=b<c. The equation, now, is

(a.oi

Fig. 141
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It is easy to show that (a, 0) is an isolated point, as if the oval

of case I shrinks to the point (a, 0).

The curve consists of an isolated point and an infinite branch
and can be easily drawn. (Fig. 141 on the preceding page).

As in case I, it can be shown that the curve has two points of
inflexion.

Case III. a<b=c. The equation, w>w, is

Fig. 142

It is easily shown that (b, 0) is a node and

are the nodal tangents.

The curve may now be easily drawn. (Fig. 142).

Case IV. a=b=c. The equation, now, is

Fig. 143
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It is easy to see that (a, 0) is a cusp and "j^O is the cuspidal

tangent.

The curve may b3 easily drawn. (Fig. 143).

5. Trace the cissoid

y*(a-x)=x*.

This curve has already bsen considered in 11-41, p. 244 also.

(See Pig. 64, p. 244).

We note the following particulars about the curve :

(i) It is symmetrical about x-axis.

(ti) It passes through the origin and y2=0, i.e., J>=0, jj=0
are the two coincident tangents at the origin. Thus the origin is a

cusp.

(Hi) It meets the co-ordinate axes at the origin only.

(iv) x^a is the only asymptote of the curve.

(v) Since

y*--x*/(ax),

we see that j
2

is positive, i.e., y is real only when x lies between
and a.

which vanishes when x=f# or 0.

But X fais outside the range of admissible values of x. Thus

dyjdx vanishes at no admissible value of x except x=0.

Combining all these facts, we may easily see that the shape of

the curve is as shown in Pig. 64, p. 244.

Note. The student would do well to learn to trace the curves given in

1 1*4?, 1 1-43 also by the methods of this chapter.

6. Trace the curve

(/) It is neither symmetrical about the coordinate axes nor

about the

(if) Origin is a cusp, and x=0 is the cuspidal tangent.

(HI) It meets A"-axis at .(0, 0) and (3a, 0) bjut
meets F-axis at

he origin only ;
x=3a is the tangent at (3a, 0).

(10) y+x=aia its only asymptote and the curve meets the

asymptote at
'

(a/3, 20/3). !

(t;) x and y cannot both be negative.

(vi) Now, y*dyldx=x(%dx) and, therefore,

y
for x=2a.
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Solving for y, we obtain

357

Fig. 144.

If *=0, then y=0 and 7-axis is the tangent there.

If <JC<3a, then >>>0, and if x increases from 0, y also in-

creases ; y will go on increasing with x till x=2a where dyfdx=Q.
When x increases beyond 2a, y will constantly be decreasing ; y=0
for x=3a and is negative for x>3a.

We now consider the negative values of JC.

If x is negative, y is positive and constantly goes on increasing
as x increases numerically, i.e., as x varies from to oo.

Also, y+x=a is the only asymptote of the curve.

Taking all the above facts into consideration, we aee that the

complete curve is as shown in Pig. 144.

18-4. Equation of the form y
1
+yf(x) + F(x)= o.

7, Trace the curve

(i) It is symmetrical neither about the co-ordinate axes, nor
about the line y=x.

(ii) Origin is a cusp and y =0 is the cuspidal tangent.

(///) It meets the co-ordinate axes at the origin only.

(tv) y=x-\-l is the only asymptote of the curve. It meets the
curve at (-, i).

(v) We re-write the equation as a quadratic, in y and solve

We haveit.

or

yx*+x*~ 0,
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so that y is imaginary ifxs
(x4.) is negative i.e., if x lies between

and 4.

Fig. 145.

Thus, there is no part of the curve lying between the line x=0
and x=4.

(vi) y=8 when x=4 for both the branches, and ;c=4 is the

tangent at the point.

The following additional remarks about the two branches of
curve will facilitate the process of tracing the curve.

and

y

y=

are the two branches. They meet where x4 4x8=0, i.e* 9 where #=0
or 4.

Thus the two branches meet at the points (0, 0) and (4, 8).

Consider the branch (i).

When x, starting from 4, increases, then y is positive and also

constantly increases.

Also, when x starting from decreases, and takes up negative
*

values whose numerical value increases, then y is positive and con-

stantly increases.

Now, consider the branch (//).

When x>4, x4 4;c
3
is positive and <\/(x*4cX*)<\/x*=x* and,

therefore, y is positive. Also, when x, starting from 4, increases, y
decreases in the beginning.

When x<0, x4 4*3 is positive and \/(x
4

4x*)> -y/x
4 =*x1 so
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that y is negative. Also, when x, starting from 0, decreases, then y
numerically increases. Thus, we have the shape as shown in Fig. 145.

18-5. Polar carves.

8. Trace the curve

\

Fig. 146.

We first consider positive values only. We have

dr _ 2a0

^0
=

(f-jL02)2>

which is always positive so that r, constantly increases as, 0, in-

creases.

Also,

r=0 when 0=0;

Again we have

- s= -

_2
- which -> a as -> oo.

Thus r, starting from its initial value 0, constantly increases as

increases and approaches, a, as -> oo so that the point (r, 0)

approaches nearer and nearer the circle whose centre is at the pole
and radius equal to a.

The circle is shown dotted in the Fig. 146.

The figure shows the part of the curve corresponding to the posi-
tive values of only, and the part of the curve for negative values

is its reflection in the initial line.

9. Trace the curve

r~a(sec d+cos 0).

Here

1
,

\ 1+ cos2

v x~ + cos 9 ]=^a
--

\cos / cos

(i) The curve is symmetrical about the initial line,

(ii) r cos 0=a, i.e., x=rtis its asymptote.
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~ so .that 4- is positive when lies between

Fig, 147.

When 0=0, dr/dOQ so that <=Tr/2 and, therefore, the tangent
is perpendicular to the initial line at the point (2a, 0) .

Also, r=2a, when 0=0 and r -> oo as -> Tr/2.

Hence we see that when increases from to TT, or monotoni-

cally increases that 2a to oo and the point P(r, 0) describes the part
of the curve drawn in the first quadrant.

, When 6 increases from TT to TT, r, remains negative and de-

creases in numerical value from oo to 2a and so the point P(r t 6)
describes the part of the curve as shown in the fourth quadrant.

As the curve is symmetrical about the initial line, no new

point will be obtained when 6 varies from TT to 2ir.

18*6. In the case of some curves it is found convenient to

make use of the polar as well as the Cartesian form of their equa-
tions. Some facts are obtained from the Cartesian and the others

from the Polar form.

Curves whose cartesians equations are not solvable for x and

y, but whose polar equations are solvable for r, are generally dealt

with in this manner.

10. Trace the curve

(/) It is symmetrical about both the axes.
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are the nodal(//)* Origin is a node on the curve and y*
tangents.

(Hi) It meets Jf-axis at (0, 0) (a, 0) and ( a, 0), but meets
F-axis at (0, 0) only ;

x=a andx= flare the tangents at (a, 0)
and ( a, 0). !

(iv) It has no asymptotes. I

On changing to polar co-ordinates, the equation becomes

, 0* cos 2

"cos40+sin40'

(v) We see that

___
cto~~ (cos

4
~0-f sin"* 0)~

'

so that drfdQ remains negative as varies from to ir/4 and there-

fore r decreases from a to as increases from Q to ?r/4.

(vi) As changes from ir/4 to ir/2, r2 remains negative and
therefore no point on the curve lies between the lines 0=7r/4 and

0-7T/2.

Fig. 148.

As the curve is symmetrical about both the axes, we have its

shape as shown. (Fig. 148).

11. Trace the curve

y*~-x*+xy=Q. (P.U.)

(i) It is neither symmetrical about the co-ordinate axes, nor
about the line y=x.

(ii) It passes through the origin : JC=0, y~Q are the two tan-

gents thereat so that the origin is a node.

(1/1) It cuts the co-ordinate axes at the origin only.

(iv) y=x, y=*x are its asymptotes.
On transforming to polar co-ordinates, we get

ra= tan 20.

(v) When increases from to w/4, 20 increases from to

ir/2, and, therefore, ra monotonically increases from to oo.
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When increases from -ir/4 to ir/2, tan 26 and therefore also

rf remains negative and, thus, there is no part of the curve lying
between the lines 0=ir/4 and =ir/2.

Y4

Fig. 149.

When $ increases from ir/2 to 3-7T/4, r2 increases from to oo.

When 6 increases from 3?r,/4 to TT, r2 remains negative and so

there is no part of the curve lying between the lines = 3Tr/4, and
0=TT.

We can similarly consider the variations of r2 as $ increases

from TT to 2?r.

Hence we have the curve as drawn. (Fig. 149)

12. Trace the Folium of Descartes

(i) It is symmetrical about the line y=x and meets it in the

point (3a/2, 30/2).

(11) It passes through the origin and x0, )>=0 are the tangents
there so that the origin is a node on the curve.

(//i) It meets the co-ordinate axes at the origin only.

(iv) x+y+a=Q is its only asymptote.

00 x, y cannot both be negative so that no part of the curve

lies on the third quadrant.

^ On transforming to polar co-ordinates, we get

_ 30 sin cos
r~

cosM~+sin3
'

Now, r=0 for 0=0 and 0=7r/2.

dr^ __ 3a(cos sin 0)(l+sin cos 0+sin
2 cos20)

46
~ '"

"(cos
81

^ +sin
3
0)

2
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which vanishes only when

cos sin 0=0, i.e., tan 0=1. i.e., 0=7r/4 or 57T/4.

For 0=7T/4, r:-=3a/V2 -

Yt ,

Fig. 150

Thus /* monotonically increases from to 3a/\/2, as Q increases

from to 7T/4, and monotonically decreases from 30/ y'2 to 0, as 9

increases from Tr/4 to Tr/2.

Again as Q increases from ?r/2 to 37T/4, r remains negative and

numerically increases from to oo so that the point (r, 0) describes

the part of the curve shown in the fourth quadrant. (Fig. 150).

As increases from 37T/4 to TT, r remains positive and decreases

from oo to so that the point describes the part of the curve shown
in the second quadrant.

It is easy to see that we do not .get any new point on the curve

when, 0, increases from TT to 2?r.

13. Find the double point of the curve

and trace it.

Let
(P.U.I955)

fv(x, y)

Putting /JC--0 and /y=0, we have

or

Thus we see that fx and / vanish at the points (0, 0), (a, a)

(a, a). Of these only (0, 0) is a point of the curve so that the

origin is the only double point of the curve.
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To trace the curve we note the following particulars aboht it

(i) It is symmetrical about the line y=*x and meets it at

Fig. 151

(it) It passes through the origin and X 0, y0, are the two

tangents there.

(Hi) It meets the co-ordinate axes at the origin only.

(tv) It has no asymptotes.

(v) x and y cannot have values with opposite signs, for such

values make 4fflxy negative whereas x*+y* is always positive. Thus
the curve lies in the first and fourth quadrants only.

(vi) On transforming to polar co-ordinates, we have

r2 sin cos 0/(sin
40+cos4

0).

dr
1 (cos

2
0-~ sin

2
0)(cos

4
0+sift40-f 4 sin2 co*2

0)
r ' ^2a ' ~

4 4a " "

so that dr/dO^O if and only if

tan 0=1, i.e., 0=7T/4 and 57T/4.

Thus we have the curve as drawn (Fig. 151).

18-6. Parametric Equations. The following examples will illus-

trate the process.

14. Trace the curve

x=a(Q+sin 0), y=a(\+cos 0),

as* 0, varies in the interval
( TT, TT).

Yt

Fig. 152
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dy
~0(l+eos0), -~-= asin0.

U0

We have

dx

de

^ ten-?-*
~

VjtlJL ^
dx 2

Since dx/</0 is positive for every value of 0, we see that as, 0,

increases, .v will always increase. Also, dy\dQ is positive when, 0, lies

in the interval ( TT, 0) and negative when, 0, lies in the interval

(0, ir). Therefore}* constantly increases as increases from TT to

and constantly decreases as, 0, increases from to TT,

The following table gives the corresponding values of 0, x, y,
arid dy/dx : .

y

dy/dx i

TT Intermediate

an ', increases I

i

increases ; 2a

oo

Intermediate

increases

decreases

7T

an

CO

Since for = TT, we have x= air, y and dy/dxco, we see

that the point A( an, 0) lies on the curve and the tangent thereat is

parallel to F-axis ; when increases from --TT to 0, x and y are both

increasing so that the point P(x, y) moves to the right and upwards
till it reaches the position K(0, 2a) corresponding to = where, dyjdx
being 0, the tangent is parallel to A'-axis.

When increases from to TT, x increases but y decreases so

that the point moves to the right and downwards till it reaches the

position A' (an, 0) corresponding to 0~7r where, dyfdx being infinite,

the tangent is parallel to F-axis.

Thus the point F(x, y) describes the curve AVA' as increases

from TT to TT.

It is easy to see that the point P(x, y) describes congruent por-
tions to the right and to the left of the portion AVA' as varies in

the intervals

...... (-57T, -STT), (-37T, -TT), (TT, STT), (3?r, 5?r) ......

15. Trace the curve

x=^a sin 20(1 +cos 20), y=a cos 2o(l cos 20).

We have

: =40 cos 30 cos

This shows that

d0

dx

-4a cos 30 sin 0.
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dyjdx.

The following table gives corresponding values of 0, x, y and

7T/2

00

7T
X

With the help of this table of values, we have the curve as

shown. (Fig. 153).

Since x, y are periodic functions of 0, with TT as their period, the

values of x, y will repeat themselves as varies in the intervals

(TT, 27r), (2;r, 3?r), etc.,

so that the same curve will be traced.

A

o X

6

Fig. 153

The curve has 3 cupps viz., A, B and C.
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Exercises

Trace the following curves :

1. 3ay'=x*(x-a). 2.

3. ay*=x(a
2 x2

). 4.

5. y
2*=x2(4-x*). 6. x(x

2+y2
)=a(x*-y

2
). (D.U. 1955)

8. y(a
2+x2)=a2x. (B.U.)

9. X2(y
2+x2)=a2

(x*-y
2
). 10. flV-x^a2-*1

)- (# ^5)

13. ;v
2;c=08

(a-jc). 14.

15. yV+x2)=02
;c
2

. 16.

17. y
2x=a(x2-a2

). 18.

19. /x2=x2-K 20.

21. a2y
2=x2

(2a-x)(x-a). 22.

23. >>
2
(2;c-l)=x(;t-l). 24.

25. 36;>
2
^(jc

2
-l)

2
(7-;t

2
)
8

. 26. x-(y-l)(y-2)(.v-3). (/*{/.)

Trace the following curves :

27. r-a-t-6cos0. 28. r cos8 0=a cos 20. (L.U.)

29. r cos 0=a sin 30. 30. r 2 cos 0= 2 sin 30.

31. r=alog0. 32. r log 0=a.

33. r=a^ sin 0. 34. r=a(0 -sin e).

Trace the following curves :

35. x*+y*= 5ax2
y
2

. 36.

37. x*=ay*-axy*. 38.

39. x(yx)=(y+x)(y2
+x*).

Trace the following curves :
-

40. .v
s

a:
2
(jt-}-a). 41.

42. <flx?-&lf**\. 43.

44. axy=x*-a*. 45.

46. Show that the curve x*(x+y)y2=Q has a cusp at the origin and a
rectilinear asymptote x+y=*\ and no part of the curve lies between the lines

x0 and x= 4 and that it consists of two infinite branches, one in the second

quadrant and the other in the first and fourth. Give a sketch of the curve.

Trace the following curves :

47. **-(* +J0
a

. (L.U.) 48. y(x-y)*=(x+y). (B.U.)

49. xa(y+l)-y2
(x-4). (P.U.) 50. y-x(*

2-m2
>fy (B.C/.

51. 2xy=x*+y*. 52. x4
.
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53. Xl~*2
)(2-~*)

2
==*(l--*). - 54. r(l

55. Show that no part of the curve

lies between x= 4 and x=~l or between x0 and x=3 ; give a sketch of the
curve. (Af.T.)

56. Show that the cubic

xy*-x'*y-lx*-2xy+ytl+x-2y+\=-Q,
has double point at (0, 1) ; find its asymptotes and sketch the curve.

Trace the following curves :

' 57- \x=a(0~sin0),>'=a(l"-cos0).

58. x=a(0+sin 0), y^a (1-cos 0).

59. x=a cos3
0, y=b sin8

0.

60. x=a cos8
0, y=a (sin 30+9 sin 0).

61. x=0(3 cos0 cos3
0), y=a (3 sin 0-sin

8
0).

62. x=fl(co$ 0+0 sin 0), ^^=a(sin 00 cos 0).

63. x/=log (1+cos 0)-~cos 0, y/a=sin -

64. x=a log |
(sec 0+tan 0) 1 , y=a log i cosec 0+cot 0) |

.

65. x/a=2 sin 0-log I (sec 0+tan 0) I ,

ylb=2 C03 0-log | (cosec 0+cot 0)

66. x=a cos ; .y=a(2+sin 0) sin2 0/(3+cos 0).

67. x=0(sin + i sin 30), j=a (cos 0-J cos 30).

68. *==0(0+sin cos 6-in 0), y=a(cos
20-cos 0).



CHAPTER XIX

ENVELOPES

19-1. One parameter family of Curves. If f(x y y, a) be.any
function of three variables, then the equation

f(x,y,*)=o,

determines a curve corresponding to each particular value of a.

The totality of these curves, obtained by assigning different

values to a, is said to be a one-parameter family of curves.

The variable, a, which is different for different curves is said to

be the parameter for the family.

Illustration.

(i) The equation

determines a family of curves which are circles with their centres

on A'-axis and which pass through the origin. Here, a, is the

parameter.

(//) The equation

y=mx 2am- am3
,

determines a family of straight lines which are normals to the

parabola

Here the parameter is m. .

We now introduce the concept of the envelope of a one-

parameter family of curves by means of an example CDnsidered in the

next article.
*

'

19*2. Consider the family of straight lines

y^mx+afm, ...(i)

where, w, is the parameter and, a, is some constant.

The two members of this family corresponding, to, the para-
metric values ml and Wj-f 8m of the parameter, m, are

~
, ..()m

i

369
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We shall keep m
l fixed and regard. 8m as a variable which

tends .towards so that the line (///') tends to coincide with the

4ine (ii).

The two lines (//), (///) intersect at (#, y) t
where

As 8w -> 0, this point of intersection goes on changing its posi-
tion on the line (//) and, in the limit, tends to the point

1 1

Nwhich lies on (ii).

This point is the limiting position of the point of intersection

of the line (ii) with another lino of the family when the latter tends

to coincide with the former.

There will lie a point, similarly, obtained, on every line of the

family. The locus of such points is called the envelope of the given

family of lines.

To find this locus for the family of lines (//), we notice that the

oo-ordinates (x, y) of such a point lying on the line *m
j

are given by

a 2ax= -
, y=m* m

Eliminating m, we obtain

as the envelope of the given family of lines.

19-3. Definition. The envelope of a one-parameter offamily of
curves is the locus of the limiting position of the points of intersection

ofany two curves of the family when one of them tends to coincide with

the other which is kept fixed.

19*4. Determination of Envelope. Let

/(x,y,a)-0, ..(/)

j^be any given family of curves.

Consider any two members

and

f(x,y, a+Sa)=0,

^corresponding to the parametric values a and oc+Sa.
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The points common to the two curves (/), (11) satisfy the

equation

f(x, y, a +8a) -/(*, JF, a)

g
_ _

.

Let Sa -> 0. Therefore the limiting positions of the points,
common to (/) and (11) satisfy the equation which is the limit of (ill)

viz.,

/a(*,J>,)=0. ..(/v)

Thus the co-ordinates of the points on the envelope satisfy the

equations (i) and (/v).

Let the elimination of a between (i) and (/v) lead to an equa-
tion

This is, then, the required envelope.

Rule. To obtain the envelope of the family of curves

/(*,J>,a)=0,

eliminate, a, between

f(x, y, a)=0, andfa(x> y, a)=0,

where fax, y, a) is the partial derivative off(x, y, a) w.r. to a.

If, on solving the equations (/) and (/v) for x, y, we obtain

*=#(), .-(v)

y=*(a), ..(vi)

then (w) and (v/) are the parametric equations of the envelope ;
a

being the parameter.

Illustration. To find the envelope of the family of lines

y <x.x fl/a-=0, - -(w'O

Tve eliminate, a, between (v/7) and

which is obtained by differentiating (vii) w.r. to a.

The eliminant is

which is the envelope of the given family of lines.

This conclusion agrees with the one already arrived at 'ab
initio

9

in 19-2.
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19-5. Theorem. The evolute of a curve is the env3lope of its

normals.

PR, QR are the normals and PT, QT the tangents at two
points P, Q of a curve. L is the point of intersection of the tan-

/
gents.T LPRQ= LTLT'=W,

arc PQ=Ss.

Applying sine-formula to the A.

PRQ, we get

sin /_RQP

or P:=sin /_RQP. -~^
sin

chord

Let Q ^ P, so that Z./?gP -> L RPT^ir/2.

Lim P/?=sin-- . 1 .
~~

. 1 = P.

Q-+P 2 ^

Thus the limiting position of R which is the intersection of the
normals at P and Q is the centre of curvature at P.

Hence the theorem.

19-6. Geometrical relation between a family of curves and its

envelope.

19-61. To prove that any singular point of any curve of a given
family is a point on its envelope.

We have to show that if for any point on any member of the

family

we have

/,=/w=0,
then, for such a point, we will also have

/a=0.
From (i), we get

Putting

dfldx=dfldy=Q, we get

9//9a=0.
Hence the result.



ENVELOPES 373

Thus the locus of the singular points of the curves of a family
is a part of its envelope.

1962. To prove that, in general, the envelope of a family of
curves touches each member of the family.

Let

/(*,?, a)=0, ...(/)

be a given family of curves.

Its envelops is obtained by eliminating a between (/) and

Let

= $ (a)

be the parametric equation of the envelope obtained by solving (/)

and (//) for x and y in terms of a.

The equation (Hi) satisfy the equation (i) identically, i.e., for

every value of a.

We differentiate (/) w.r. to a, regarding jc, y as functions of a,

o that we obtain

3/ dx_ df dy 9/_
dx

'

</<x ^dy
'

'da
+

a<x

which, with the help of (//), becomes

^f()+^*'(a)=0. ...(IV)

The slope of the tangent at an ordinary point (x, y) of a curve
"V of the family is

Also the slope of the tangent at the same point to the envelope
<///)iB*'(a)#'(a).

We see from (iv) that these two slopes are the same. Thus
the slopes of the tangents to the curve and the envelope at the com-
mon point are equal. This means that the curve and the envelope
have the same tangent at the common point so that they touch.

N7
ote. If for any point on a curve, 3 ffox and 3 ffoy are both zero, then

the above argument will break down, so that the envelope may not touch a

curve at points which are the singular points on the curve.

Cor. 1. We know that a straight lino and a conic cannot have

a singular point. Hence we can say that the envelope of a family of
straight lines or of conies touches each member of the family at all their

common points without exception.
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Examples

I. Find the envelope of the family ofsemi-cubicalparabola*
/ *Y

Differentiating (/) w.r. to a, we

- -.
155

of the family.

2. Find the envelope of the family

.

Eliminating a between (i)
and

(//),
we get

y=o,
which is the required envelope.

We already know that y=0 iff

the locus of singular points i.e., cusps,

Of i and also it touches each member

where a is a constant and m is a parameter.

Differentiating w.r. to m we get

Eliminating m, we get

which is the envelope.

Thus the envelope consists of two
ines

x0 and x=a.
If we trace the given curves

x+a
Fig. 156

we will find that j-axis (x=0) is the locus of its singular points and

x=a is tangent to each curve.

3. Considering the evolute of a curve as the envelope of its

normals, find the evolute of the ellipse x
2
/a

2 +y2
/6-=l.

The equation of the normal at any point (a cos 0, b sin 0) on

the ellipse is

ax
^Jby^^tf^ip //v

cos "~~sin 0~~

Thus, (i) is the equation of the family of normals, where is

the parameter.

Differentiating (/) partially w.r. to 0, we have

ax sin by GOB __ ,..v

cos2 <T + sin2
"* l)
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To obtain the envelope, we have to eliminate 6 between (i) and

(//). From (ii), we get

tan-van v=--- .

()*

Substituting these values in (/), we get

[(<*x)% +(by)$] [(**)* +(*)>)*]* =**-&*,

or

or

which is the required evolute.

4. Find the envelope of thefamily of ellipses

/z^ two parameter a, 6, flre connected by the relation

a+b=c ;

c, fomg tz constant. (B.U. 1954)*

We will eliminate one parameter and express the equation of

given family in terms of the other. We have
&= c a,

so that

ia the equation of the family involving on parameter a.

Differentiating (i) partially n\r. to a
y
we have

ca
~0 or - - =

which gives

- ----^ /(

Substituting these values in (/), we get

or

or

which is the required envelope
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f'W> $) ,:$w4';&? ewehpt offhe family of lines
"

,(0,

the parameters a and b ore connected by the relation

Here, if, as in the example abo^e, we eliminate one parameter,
the process of determining the envelope will become rather tedious.

This tedio^sn^ss may be avoided in the following manner.

We pohsider, b, As a 'functibq. of, a, as determined fr6m (//).

Differentiating (/) and (11) w.r. to the parameter, a, we get

b _ ^
.

'

, da N '

From (Hi) and (iv), we eliminate db\da and get

.x y

The equation of the envelope will, now, be obtained by elimi-

nating a and b from (/), (11) and (v). Now (v) gives

x'/a y\b xfa+y/b 1-^ --- r =--L- [From (/) and (//)]n n L v y v /J

=:xcw or a=

^n or ^^
Substituting these values in (//), we get

or

xn/(n+l)
as the required envelope.

6. Show that the envelope of a circle whose centre lies on the

parabola y*=4ax and which passes through its vertex is the cissoid

y*(2a+x)+x*=0. (B.U. 7953)

Now, (a/
2

, 2at) is any point on the parabola. Its distance from

the vertex (0, 0) is

Thus, the equation of the given family of circles is

(x at*)+(y-2at)*=^a
2
t*+4a*t

2
,

or

x*+y*2at*x-4:aty=Q. ...(vi)

Differentiating (i), w.r. to t, we get
4a/x 4oy=0, or /= y\x.

Substituting this value of t in (/), we get the required envelope.



ENVELOPES 377

7. Find the envelope of straight lines drawn at risht angles, to the

radii vectors of the Cordioide.

through their extremities.

Let P be any point on the curve. If a be its vectorial angle,
then its radius vector OP=^a(l +cos a).

The equation of the line drawn through P at right angles to the

radius vector OP is

r cos (6 a)=tf(l +cos a). ..(I)-

The angle a is different for different straight lines.

Differentiating (1) w.r. to a, we get .

,

rsin (0 a)^ sin a. ..(2)

To eliminate (a) from (1) and (2), we re-write them as

(r cos Qa) cos a-\-r sin 6 sin a=a. . .(3)

r sin 9 cos a (r COR a) sin a =0, ..(4)

Now, (4) gives

tan cL= r sin 0/(r cos Qa).
__ r sin __

r cos 0a
'

C S a~ 2 ' cos 0'

Substituting these values in (3), we obtain

(r cos 0-tf)
2 +r 2 sin2 0_

y(r
2 +aa 2ar cos 0)

"~~
'

or

r2^02_oar cos 0a2
, i.^., r=2a cos

which is the required envelope.

Exercises

1. Find the envelope of the following families of lines :

(i) y^wx+^cFm2 ^ 62
), the parameter being m ;

(//) x cos3
Q-\-y sin3 0=a, the parameter being o ;

(iii) x sin y cos G~flO. the parameter being o ',

(/v) xcosn Oi->>sin
n
0^=0, the parameter being 6 ;

(v) y=mx + amp
, the parameter being m ;

(v/) xcosec o ^cot o~c.
2. Find the envelope of the family of straight lines xla+ylb=-\ where

4, 6 are connected b> the relation

(/) a+6=c. (//) a2+62-c2
. (m) a^-c1

,

c is a const ant.

3. Find the envelope of the ellipses, having the axes of co-ordinates as

principal axes and the semi-axes a, b connected by tne relation

4. Show that the envelope of the family of the parabolas,

under the condition

(/) a6=c2 is a hyperbola having its asymptotes coinciding with axes.

, (11) a-f 6==c is an astroid.
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*~A*I>
5* 9on5idcriag the evolute of a curve as the envelope of its normals,,

find the evolute of the parabola y*=4ax.
6. Prove that the equation of the normal to the curve

may be written in the form x sin f-y cos #+ cos 20=0 and find the envelope
of the equation of the normals. (P.U. 1944}

7. Find the equation of the normal at any point of the curve

*=0(3 cos t2 cos8 0, y=a(l sin t-2 sin8 f)
and also find the equation of its evolute. [P.U. (Supp.) 19361

A
8 *

,
Fromacy point of the ellipse x2/a

2
-f>

2
/6

2=l, perpendiculars are
drawn to the axes and their feet are joined; show that the straight line thu*
formed always touches the curve

UAO* +(ylb)% =1 (B.U. 1952)
9. Find the envelope of the curves

x*loP cos Q+b*ly* sin 6=1.
10. Circles are described on the double ordinates of the parabola y

2=4ax
as diameters : prove that the envelope is the parabola y*=4a(x+a).

[P.U. (Supp.) J935]
11. Show that the envelope of the circles whose centres lie on the

rectangular hyperbola x*-y*=a* and which pass through the origin is the
lemmscate

r2=4a2 cos 20. (B.U. 1955)

Find the envelope of the circles described upon the radii vectors of

'*V+ya
/6*= las diameter.

13. Find the envelope of a family of parabolas of given latus rectum and
parallel axes, when the locus of their foci is a given straight line

y=px+q. (P.U. 1931)

.
14, Shnw that the envelope ol the straight line joining the extremities of

a pair of semi-conjugate diameters of the ellipse *
2
/a

2+rV62=l is the ellipse

15. Find the envelope of straight lines drawn at right angles to the radii
vectors of the following curves through their extremities :

(i) r=*a+b cos 6. (//) r
n=an cos n.

(///)r=<*
Gcota

. (B.U. 1953)
16. Find the envelope of the circles described on the radii vectors of the

following curves as diameter :

(/) ///= i +e cos 9. (//) r
n-. an cos jfQ,

17. Find the envelope of the curves

where the parameters a and 6 are connected by the relation

a+ bv=cv
. (P.U. 1955)

18. Show that the family of circles (x-0)
8+V2=fl2 has no envelope.

(P.U. 1942)

Miscellaneous Exercises II

1. Show that all the curves represented by the equation

*~a~
+

~~b VflHhfr/
'

for different values of n. touch each other at the point x^-y^abl(a f b) and that
the radius of curvature at this point is

(DV. 1956)
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2. If the polar equation of a curve be r**a see* ie, find an expression for

its radius of curvature at any point.

3. Show that

x=a(cos 0+0 sin 8), y=0(sin 06 cos 0>,

is the involute ofa circle.

4. Find the radii of curvature of the curve

nV-a1*4
-**,

for the points *=0 and x~a.
5. If a curve be given by the equations--'2-2 2=f 2 - 2--2,

find the radius of curvature in terms of t.

6. If a curve passes through the origin at an inclination, , to the axis

of x, show that the diameter of curvature at the origin is the limit of

(x*+y*)l(x sin <t-y cos a)

when x -* 0. Hence show that the radius ofcurvature at the origin of the curve

y*+ lay 2ax 0,
is -242a.

7. If P,, pf be the radii of curvature at the extremities of two conjugate

semi-diameters of an ellipse semi-axes a, b t prove that

1948

8. Show that the projections on the X-axis of radii of curvature at the

corresponding points of >>=log cos x and its evolute are equal.

9. If P is any point on the curve r
m=am cos /up

and Q is the intersec-

tion of the normal at P with the .line through O at right angles to the radius

vector OP, prove ihat the centre of curvature corresponding to P divides PQ m
the ratio / : m.

10. The equation of the equiangular spiral is r=ae cot
. Prove that if

O be the pole and P any point on the curve, then a straight line drawn through

Oat right angles to OP. intersects the normal at P in C such that PC is.this

radius of curvature at P. (M.u.y

11. Show that the normal to the Lemniscate

r
2

^?
2 cos 28

at the point whose vectorial angle is */6 is perpendicular to the initial line and

that the centre of curvature at the point at a distance 420/12 below the initial

line.

12. Show that a point P on the curve

*=3 cos 0-cos*0, >'=3 sin 0-sin
2

where 0=7r/4, the normal* passes through the origin and that the centre of

curvature at P divides OP internally in the ratio 4:1. (B.U.)

13. Show that the pole Hes within the circle of curvature at every point
of the cardioide a(l-f cos 0), and that its power with respect to it is rN3.

14. Find the co-ordinates of the point in which the circle of curvature of

the parabola y* = 4x at the poini (f*, 2f) meets the curve again.

The circles of curvature of a fixed parabola at the extremities of a focal.

chord meet the parabola again at/fandtf; prove that HK passes through a

fixed point. (Indian Police 1935)

15. p, p' are the radii of curvature of an ellipse and its evolute at corres-

ponding points P, P' A is the area of the triangh which the tangent at P make*
with the axes ; show that p/p' varies as A*

16. Prove that the maximum length of the perpendicular from the pole

on the normal to the curve r=fl(i cos 0) is 4<V3a/9. (B.U.)

17. For what points on the curve xy*~a*(a-x) is the square of sub-tan-

gent maximum.
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18. Show that the tangents at the points of inflexion of the curve

5xH3y-4a=0, (B.U.)
19. Find points of* inflexion on

x(xy-a
z
)*=b'. (M.T.)

20. Find the co-ordinates of two real points of inflexion on the curve

y
2

=(x-2Y(x-5)
and show that they subtend a right angle at the double point.

21. If O.is a fixed and Q, a variable point on a given circle whose centre
is C and if QQ is produced to P so that QP=2. OC, prove that the radius of
curvature of the locus of P at the point P is

B

22. If O is the extremity of the polar sub-tangent at a point P of the
curve

r=atan(0/2).
prove that the locus of Q is.

r=0(l-fsinO). (B.U.)

23. Find polar sub-tangent and polar sub-normal at any point of the
-curve

r=*-
-show that the polar sub-tangent constantly increases as increases and the

polar sub-normal attains its maximum value 3>j3a/8 at the point (a/4, 1/^3).

24. Show that the circles of curvature of the parabola
y*=4ax

for the ends of the latus rectum have for their equations

and that they cut the curve again in the point (9a, qp 6n). (P-U.)

25. Show that the centre of curvature at every point of the curve

r=0(0 sin 0)

Avhere it meets the positive side .of initial line is the pole.

26. Show that the co-ordinates of the centre of curvature may be given
in any of the following ways :

,
dx 1

rf

_1

J

27- Show that the area of the triangle formed "by a tangent to the cissoid

j/
2(2a-x)=A,

its asymptote and A'-axis is greatest for the point given by
x= 3a/2,

28. Find the equations of the tangents to the curve

parallel to the line y=x.
29. Trace the curve

r^=a(l+cos e)

^ind prove that the greatest distance of the tangent to the curve from the middle

point of the axis is >l2a. CP U-)

30. Show that the length of the perpendicular from the foot of the

ofdinate to ; normal at any point of the curve

jt=0(sinh 26-20), y=4a cosh 0,

is constant.
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31. Show that for the curve

0)-cos 0, y/a=sin 0,

the portion of the A'-axis intercepted between the tangent and the norrral at

, any point is constant.

32. Find the nature of the double poiut on the curve

and show that it has two real points of inflexion.

33. Show that the pedal equation of the curve

34, Show that the tangential pedal equation of the curve

* =<*/*) +(;/*)
is

1 la
2 sin2 $ -f 1 Ib- cos2

35. If on the tangent at each point of curve, a constant length be
measured from the point of contact, prove that the normal to the locus of the
point so formed passes through the corresponding centre of curvature of the
given curve.

36. Show that there is a curve for which the circles

U-a)2 + y
2~2y cosh a+l=0,

as the parameter V varies, are the circles of curvature.

37. Prove that the distance from a fixed point P (x , ye ) to a variable
point P on the curve f(x,y)^V is stationary when PP is normal to the curve
at P.

38. The tangents at any point '0' of

x=--a(0 + sin 0),.v=0(Hcos 0)

is normal to the curve at the point where it meets the next span on the right
prove that cot (0/2)^=-- n/2.

"

39. Show that the locus of the intersection of perpendicular tangents to>

the Astroid
x=^a cos3

0, y=a sin3

is the curve

2(jc*+/)=fl
2
(*

8-
iy
2
)
2

; (D.V. Hans., 1959}
and the locus of the intersection of perpendicular normals is the curve

40. For the curve

x^=a(2 cos r-f cos 2f), y=a(2 sin /-sin 2f),
find the equation of the tangent and normal at the point whose parameter is t
and show that

(0 the tangent at P meets the curve in the points Q, R whose parameters
are -i/ and?r-i/,

(11) QR is constant,

(Hi) ihe tangents at Q and R intersect at right angles on a circle,

(j'v) the normals at P, Q and R are concurrent and intersect on a concentric
circle.

41. P, Q are any two points on ay
2=x* such that PQ always passes

through a fixed point (at
9
, or 8

) lying on the curve ; show that the locus of the
point of intersection of the tangents at P, Q is the parabola

42, Tangent at any point P of the Folium x*+y*=3axy meets the curve
again at Q ; show that

cot2 LXOP+ tan

where OX is Jf-axis.



DIFFBBENTIAL CALCULUS

43. Show that x=0/4 is a bitangcnt of the cardioidc

r=a( I -cos 0). (Birmingham)
414. The envelope of the straight line

x cos #+y sin ?$=0(cos
4s the curve whose polar equation is

//(I-*) nl(l-n)~*

45. Show that the radius of curvature of the envelope of the line

XCOS a+ysin a=/(<x),

that the centre of curvature is the point

*=-/'(<*) sin a /"(a) cos a
|

y=/'(a) cos a -/"(a) sin a
| (M.U.)

>46. Discuss the nature of singularity at the origin of the curves,

(i) j>a=*(jc
a
-l). (//) x5-0(x

2
--a>0

2==0. G0.J7.)

-47. Show that the curve

bytx* sm2
(xja)

has a cusp at the origin and an infinite series of nodes lying at equal distances
from each other.

48. Trace the following curves :

(i) r-fl(2 cos e-f cos 36). (11) >^-2cV+a2^2-0.

'(///) x=0[cos f 4-log taa Jf]- y=a sin /.

49. The tangent to the evolute of a parabola at the point where it meets
the parabola is also a normal to the evolute at the point where it meets the
evolute again.

50. If p be the radius of curvature of a parabola at a point whose distance
measured along the curve from a fixed point is, s, prove that

51. If p and p' be the radii of curvature at corresponding points of a cusp
.and its evolute, and p, q, r first, second and third differential co-efficients of>>
with respect to x, prove that

P 9

[Hint. P'=</V<ty
2
-]

52. Show that the radius of curvature at a point of the evolute of the

-curve
rn~an cos n$,

-corresponding to the point (r, e) is

/

n

l~l\*
'sec/iO tan n$.

53. (a) Show that the curve

* x*-2x2y-xy*-2x2-2Ky+y2-x+2y+l=*0
lias a single cusp of the second kind at the point (0, 1).

(b) Show that the radius of curvature of the curve /(r, 8)=0 is

rcosecy

the chord of curvature perpendicular to the radius vector is 2p cos ? where
denotes the radius of curvature. (D.U. 1956)
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4 cos2 x sin 2x v '

1 x
{V)

~
V[(cos 2x)](cos x+sin x)'

(V/) * 8e 2

2
'

Page 93.
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,.
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x
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(wi). secx. (viii) --ji-f-r,

-- (w)
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/V(**)
. log a2

-! sin 2x). (x/v)

~

a2 cos2 x ft
2 sin2 x

Page 100.

Ex. (i) tanhx. () sinh 2x

(///) sec2 x tanh x 4 tan x sech2
x.
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Page 105.
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~ sec2x\/(cot x) -

. .,

1. 2x e . 2. ~
'. 3. (jc cos x t sin x).

4. 2jcsec2x2
. 5. - --1

l

2
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(l-X
2
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"
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12. -1. 13. i.
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) sin .x
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^ cos* jc)-j-4ft cos .v

.cos""
1
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25. (sin.v) ^cos-

1 x . cot x
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26. c
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27. r/ sech ax. 28. a
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30
*2~1

31 1_ 32W * ~' '

2x cos

Page 106.

33. 9x4 sin (3*- 7) . log (1 -5x) x

cot S*~

34. eax[a(l +x2
)
cos (6 tan-1

*) ~fc sin (fe tan^x)]/^ +x2
).

_/2/sin x
cosec x . cot x,e

'

/
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37. a* sinh x+xfl* sinh x log a fxa* cosh x.

38. V3/(sec x) ^(sec 3x).

39.

40 '

41. (1-x 3)"^.
Page 107.

42. (i) l/(x*+l). (H) x/(x^l).

43. (I) 0. (ii) -tan 3/. (1/1) tan t.

45. x sin x cos x/log x.

sin x 1, . . .

-, x (sin x+x cos x log x)
^o, ~- _ -__-- .

J _ 1

(sin x) (x cos x-f-sin x log sin x)

47. i %
48. x(2+2tanlogx+secMogx). 49. -1.

_/(l-x2
) (logx)

tan *[sec2 xl g (1 S ^)+tan x(xlogx)^]
* m cog ^ cos""1 x)

Page 111.

1. /'(O) exists but/
/x

(0) does not.

2. Differentiable at x=0 for m > 2. /'(x) is continuous at

the origin for m > 3.

3. /(x) is continuous but does not have derivative at the origin.

5. /(x) is continuous but not derivable at the origin.

6. Continuous when x is irrational or zero and discontinuous

for other values of x. Differentiable for no value.

7.
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Page 112.

10. Continuous but not differentiate for x=a.

11. (i) Continuous. (//) Discontinuous.

12. Discontinuous at ; derivable at 1 ; continuous but non
derivable at 2.

Page 115.

5. -3/2.
Page 116.

Page 119.
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* i

4 L (x2)*+ l

(x+2)+1
J'

2 10 t f
L(X~I)"

r

(-- 1)" n !

^ (X __ jp,
+
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1
J'

Page 120.

3.

r
.A (-!) !f 1 _ 1

X
fl)

w+1
(X+ tf)"*

1

2 sin [(n + l) cot~ 1
(

'

sin (+l)^, where

-]

7. (j) ( l)-i(w 1) ! sin" 6 sin nd, where d=cot~1x.

(ii) ( l)
n-J

(M 1) ! cosec" a sinn sin n&, where

[(x coBa)/sin
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Page 121.
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<7'0 TV t2 cos (x+imr) 3n cos (3.v+|/i7r)--5
n
co6(5jc+^w)l.

(iv) [3e*-4-5^"cos (x+w tan"1
2)

-f 17^'cos (4x+n tan 4)]/8.

(v) 4 ^ [25*" cos (jr+n tan-i i)- 13-" cos (3x+n tan i
|)

Page 123.

1. (/) e'f ^
! p -v

*
-i-

/l2

^"-.?
)2

.v M

(iii) .v
8 cos (.v -f- |TT) f-3x2 cos [Ar-j-|(n -l)7r|

-I 3(W- 1)^008 [X + J(-2)7T]4

n(/i- ])(/i- 2) cos [x+K/i 3)ir|.

(///) 0"+'-. fi *. X2

(iv) e"[log x-pfjX
' V3jr

-
f-T3 2 !. x~*~ . .

!-....-}-( I)""
1 "<' (i~l) ! . -v "|.

4. ([ x-)yn^
5. x2;vh2 +(2tt

Page 125.

2- ^fn(0)=0;^ta+1(0)=/n(L*-./n
2
)(3

a
- W-2

)
. . [(2 -1)*- m*J.

3- yan(0) -0 ; v,-+1(0)
=

(
- - 1 )" . I *

. V . 5 . . (2n
- 1

)

2
.

Page 126. 56.

4. ^(0)=w-(m= - 2 2
)(m2

- 4a
) .... [w-- (2/i

-
2)] ;

-3*)(/i|S-5). .[/
8-(2n- I)*].

2
)
.... [(2

- 1
)
2 +/].

)
. .[(2n~2)

2
4-/n

2
|.

6. >Wi-=0, ^Jn=(-l)"-
1 2 . 22 . 42

. 62. . . .(2-2)2
.

Page 126.

4.
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Page 127.

9. If n is even, yn (Q) -0 ; if n is odd, yn(0)--~n ! (3/f- 5)
~

4
.

Page 135.

Ex.3. c= (6-V2l)/ti.
Ex.4. (/)|. (n)V5. (//7)log(e -1).

Page 139.

2. For a^1, the function is steadily increasing; for d<[ 1,

the function is steadily decreasing.

3. Increasing in [ 2, 1] and [0, 1] ; decreasing in ( 00
, 2]

1-1,0], [l,oo).

4. Increasing in [
-

i, 1
] ; decreasing in (00 , 1], and [1, oo ).

5. Decreasing in (--oo , 2] and fO, 2] ; increasing in
[ 2, 0]

and [2, oo
).

Page 140.

6. :it>, o.

Page 144.

A A l

2-&2
2 , fl(l*-36) , ,

4. ^
ar cos />.V 1

I
X

! -^
---~Jt2 -f

V
- ^A'3 -! ....

2t \ o !

:

..+^j (
fl24ft)

J/l

^cos^ftflx+wtan--
1

)-

Page 150.

Ex. 2. i:m. -s.

Page 153.

Ex. 3. max. 8 ; min. -10, 21).

Ex. 5. 55/27, 1 : 1109, -27.

Page 156.

1. (/) max. 38
; min. 37. (11) min. 4.

2. Max. for x -2a and minimum for x and .v= 3</.

3. Max. forx--l, min. for x-^2.

4. 2^3/9.
5. max. 64, min. 50

;
least 0, greatest 70.

6. max. for x--l, min. for x--=6.

7. max. for x -=\/3 ;
min. for x-= */3.

11. e-
1

.

12. rain, value : log [(ae e) log tfj/log a.

13. max. values : (27T+3v/3)/6 ; (87r+3y/3)/6.
'

miii. values : (47T-3V3))6 ; (10:: 3\/3)/6.

14. max. for JC=/ITT where n is an odd positive or even negative

integer, and minimum for x~mr where n is an even positive or odd

negative integer.
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Page 156.

15. min. values :-J(5ir+3 x/3+2), (27r--3 v/3+2).
max. value : (-77+3^3-2), ^

VT ,.v
.

, V3 !17. (i) mm. value ~
; max. values.

4 o

least value
; greatest value -A'- .

(if) min. values :
, J ; max. values : -V

1-

least value : % ; greatest value : -V
1
-.

18. (/) min. -1, -2/3v/6 ; max. 1,2/3^6.

(ii) min. (a* +b% y ; max. (a$ +b% fi

(in) min. 0, 2/3-v/S ;
max. 0, 2/3V3.

where n is any integer.

Page 157.

20. max. c*l(a+b).

21. The required values are the roots of the quadratic equation

(a~-r-*)(b r~*)=h*, in r.

Page 163.

1. 9,6. 3. Sq. whose each Ride =/2ff.
4. V(40/3), vW3), h/(>/3).
5. Diameter of the semi-circle= 40/(Tr +4) ;

Height of the rectangle =-20/(7r+ 4) .

9. Breadth y^ . depth \/%a.

10. 15(^ miles per hour, 19800(|-)^ rupees.

18.

Page 164.

21. 3V30&M- 22. a-ft. 25. 3^3/4.

26. (3v/8ir)*. 28. 2V37T/27.

30. Length 2 ft., girth 4 ft.
; yes, length should now be If ft.

and girth 4J ft.

Page 168.

Ex.3. (0-f (H)**l-2e. (Hi) f (/v) | (v) 2.

(vi) 2a/6.

Ex.4. (/)|. ()f (tfi) -|. (iv) i.

Page. 169.

Ex. 5. o 2 ; limit is 1.
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Page 170.

Ex.3, (i) T\. (//) -J. (iii) 1.

(iv) 2/7T. Change cofc itx to cot \Ttx. (v) 4.

(0 i (v) |.

Page 173.

Ex. 2. (i) 0. (ii) 3. (iii) 1. (iv) 1. (v) 1. (vi) 0.

Page 174.

Ex. 2. (i) 0. (ii) 1. (iii) 20/7T.

Page 175.

Ex. 2. (i) . (ii) 0. (iii) . (iv) 7r
2
/6.

Page 176.

Ex. 3. (i) 1. (ii) e'1
. (iii) 1. (iv) 1.

Page 177. [8-7].
i

(v) e. (vi) e. (vii) e*. (viii) e.

Page 177.

1. i 2.0. 3. -5. 4. -iV 5. J. 6. -1. 7. -2.

8 e~\ 9.e~* 10. 4. 11. 2. 12. e~^ .

2A ^ O 1 O /

13. e-" 01 -. \4, e 15. e"
1
""

2
". 16. *-'*

17. e~~
a^b

*. 18. alogrt. 19. 2. 20. 1.

21. <>

2
'

/7r
. 22. A /37T/6. 23. tog (e/*) log be.

Page 178.

24. (a,a,<i3...aj\ 25. -<?/:>. 26. lie/24. 27. 16.

28. -iflV. 29. aV. 30. f"(a)l'2f'(a). 31. T
1
B .

33. Continuous at the origin.

Page 187.

7. v 2.v- *-
g-jc+

*4 - ^ 5+
2
x*-

Page 188.
Y 2 Y4

11. i+x-Hg* .

12 1 V
12. -!+ J

A 13. J-+J

14. log sin 3 + (x- 3) cot 2-^^ -
. cosec2 3 +

. Cot 3 cosec2 3.
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15. 14-f29(x---2)+16(;c-2)
J
4-3(*-2)

3
.

Page 188.

<ReacU* ->* cos *
in place of e-e* cos x

).

Page 202.

aea* sin &>>, fofl;r cos

2. (i) eB-'
) -g*-", --, -.

(ff) ye^ &-*[yx+y-l].

log

'

(i-xy)
3 '

(1-xy)*' (l

4. ]/c*r. 8. 0.

Page 203.

n_3.2-
Page 205.

Ex. 1. r sin 0, cos 0, r cos 0, sin Q, r cosec 0, cosec 0.

Page 209.

2. 4%. 6. -

-3J.

Page 215.

1. 4x-\-2y. 2. (oosyxys'my)lx
s

3. (M cot x cos M sin y+z sin v sin x)/(cos v sin y).

4. -
(
1 +*)(! +J2

)(25 f>2)/( 1 -xy)*.
5. (i) [>;+x

2 cos (x-y)-\l\x+x* cos (x-^)J.
() (cot x yx.

v ~l
log y)ylx

v
(y log x log y-4 1).

. .. sin >'(>; sin x_+cos x
log_sin j')

cos jf(sin y log cos jc x cos >>)

(/v) X^-* log y,lx(x-y log x).

j(tan x)*-
1 sec2x cosec*x log y(y)

e"' *
""

_ -
8JL 8Fl8y

8x ~~dFidz
' 8y~~ 8F/8z

'
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Page 216.

14 ,

Page 228.

1. (i) min. at (5, ). (i7) rain, at (0, 0) if t/ > .

(ill) min. at[J(6 20), J(0 --26)].

(iv) max. at (2, 1). (v) min. at (2, i).

(vi) min. at (0, 0), ( 1, 0). (v/i) max. at ( 2, 0).

(v//7) No extreme value.

(ix) max. at [-&n( I +4w -f!2/i), M 1 +4m +2/i)|,

min. at [-^-71(74-4^ + 12^), ^7r(l 4 -2m-f-2/?)],

where m and w are integers.

(x) max. at (|, ).

2. max. value 112 at (4, 0) ;
min. value 108 at (6, 0).

Page 229.

3. 2(x l
x2 )(/;/ 1

/2
a MJh)l\ 2(nh ?L

2 V1
i)

2
-

Page 232.

1. (/) 30'-. (//) 3a*. (Hi) 3w2
.

2. fl
2
(uiiu.) and Ja

2
(max.)

3. 2k^(a* ab~\b*).

4.

......
x/14

'

v/14
'

v'

6. Squares of the semi-axes are tho roots of the quadratic

71 O '2 8 O
' 8 -

"" '

Miscellaneous Exercises

Page 233.

1. Zero is the only point of discontinuity.

2. w+ i, whore w is any integer, are the only points of dis-

continuity.

3. f2/;H-l)/(l- -2/w), in being any integer and x= I.

4. 1, -1.

5. (/) All integral values of ,v.

(11) All integral values of x.

(Hi) x-0. .

-
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Page 233.

6. jc=-0, , 1.

7. Discontinuous at the origin.

Page 234.

sin (CA)+ sin (cos A cos C) 3a4
_. - ...... y ^

sin (B- Cf+sin ,4(c~os (7--cos 5)' r6

(-l)n!
', where

tan ^=a sin a/(x+a cos a).
16 Jv_ -A-v3_ 1
J.W. JA lfx Tfg

Page 236.

30. (i) !;(//) -1 ;(ffi) -1.
31. |. 32. i.

33. (i) 1. () 2a/b. (Hi) 0.

34. -2.

35. (i) continuous, (//) discontinuous, (HI) continuous.

Page 237.

-- 4-3v2

38. max. at 7T/3 and min. at 5TT/3.

40. 4/^ max. and min.

43. (3db)l(a3c) is a max. (min.) and -(b+d)l(a [ c) is a

min. (max.) if, ad be, is positive (negative).

47. Height=2(3i;/7r)*,radius= (l/V2)(3i;/7r)^ where v is the

volume of the cone.

50. 27r{l -(V2/3)} radians.

51. The vertices of the rectangle are

/ a 2a\ / 2a \ / 2a \ /

(3' V3> (' V3')' C^'-VS)' (3-

y*= ax being the equation of the parabola.

52. The greatest value is I and the least value is (l/e)

Page 260.

. (i) ;c+.y+a=-0, x->> -30.

(ii) 6Vx+a2
v'^-a762 ;

at/(x-x
/

)=fr
1
.x

/

0' -/).

(Hi)
.

(v) 3lJC8>^+9a=0 ; 8x^31^+ 42^-0.

(vi) x+^^0; x .y^O.

(vii) x+y=--3a ;
x y+a=Q.

(viii) x cos3 5+^ sin3 0=c ;
x sin3 --v cos8 ^ + 2c* cot 20 --Q.

(ix) 13x-~16);=2a
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Page 260.

5. (0 (0, a) ; (a, 0). (11) (
3
/2a, y*a) ; (V4a,*/2a)

> (^.T|-> (-1-. *

6. jc2Qy=7, 20*+7= 140.

Page 262.

2
'

"

2

Page 264.

1. (i) ir/4. (ii) tan" 1 V16 -

3, (/) m2h+m(a b) /z0. The roots of this quadratic equa-
tion in, m, are the slopes of the two axes.

Page 265.

3. a sin2 0, a tan sin2 0, a sin2 cos 0, a sin 3 tan 0.

Page 270.

1. (00/2. () 7r/2-fw0. (m) Tr/2-0/2. (/v) w/4-fmfl.

4. (i) ir/2. (ii) tan-1
.?. (/) ir/2. (iv) tan-1

[2^/(^
2-

I)]

(v) 2ir/3. (v/) 7T/2.

Page 272.

2fl a^ 3

4. (i) 2fl coss |0 cosec 0. ()
g--^ ^

. C")
tf
_ 2

-

6. (i) 0/02. (//) ft sin 0.

7. />-<*>/(1+0M2+202
).

Page 273.

9. (i) l/2J
2
=^l/r

2
+l/a

2
. (//) yj^rsina.

1 e2-! 2

(iv) l/p
2= l/r

2+a2
/r

4
. (v)

(v/) r4 =/J
2
[o

2m8+(l J
2
)r

2
J. (v/7)

(viii) r1 .-=(#
s-a2

+2ar)/>
3

. (ix)

Page 279.

x
' O cosh -

c CO

-
( '

,
< ;

2.
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Page 279.

4. (/) v'(^
2 sin20+62 cos2

0).

(ii) 3 sin cos v/(a
2 cos'2 f/>

2 sin 2
0). (ill) 2tf sin J0.

(iv) v/2tf e
6

. (v) 00.

5. (/) 2acos 0/2. (//) ay (sec 20). (111) a cosec a e
G cota

.

(iv) <V(l+ 2
)- (v) a(0

2
+l). (v/) tf(02+ l)/(02 -1)2.

(vii) am lr
m l

. (v//7) v/2a
m
/r
m ~ l

.

Page 288.

2. Concave downwards in [0, TT] and upwards in [ir, 2ir].

3. Concave upwards in [ 2, 0] and [2, oo) ;
concave down-

wards in ( -oo, -2] and [0,2]. Inflexions at (-2, 198), (0, -20),
(2, -238).

4. Concave upwards in
( oo,

-

1] and [1, GO] ;
concave down-

wards in [ 1, 1]. Inflexions at ( I, 2e) and (1, !(>/<?).

5. Concave upwards in [0, ir/l] and [5?r/4, 2ir] and concave

downwards in [ir/4, 5ir/4J.

6. (/) For x--^blZa. (ii) (0, 0), (1, 0), (1, ()).

(Hi) (5, 0), (\V- I)- ("') (0, 2).

(v) For x a and <r/(2 j- \ '3).

(v/) For x- and itf \/3. (v/7) For x= 2 and 1 ^ V/:K

3 3\

(v//7) For x -ttf/v'-. (/.v) (\ae
~

, ae* }
'

W (1,3)- - (-v/)
( \

,

*
Y

\ > O y'*> /

(.v/7) (0, 0).

Inflexional tangents to
(/'/')

are x-\-y-. 0, .x ---2j'l-- 0.

Inflexional tangents to (///) are x---- 5 and ,'{(9.x+<>)>) Inl.

Inflexional tangents to (x/) are 9x :

"f 3 v/3v {-
1 0.

Page 289.

9. For*- 2, (-4 i- v 'l8).

... (.-..-.-l-T). f].

(0,0).(///)
(

Psge 292.

Ex. (i) c sec 1
'

i//. (/'/) 4aoos^.

(zv) < tan
>{i. (v) 2fl see3

!/-.

Page 296.

at. (HI) 3(a.vj) . (/v) -*(
2. (i) -1/2. (//) 1.
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Page 297.

10. 2tflb, W-la.
14. [-(log2)/2, l/v/2].

20. (8, 3).

Page 298.

23. (c
9

-+s*)lc. 25.

Page 302.

(r*+aW-n*r*f ,

r*-r*n*+~2a*/i*
*

* '

(i/i) /(+ l)r"-i. (/v) vfy-'-o"). (")

3. o/2. 5. (i) 2p
3
/o

2
. (f'O r*//</>. (m) a

6.

7- (/)

Page 303

10. --a. 12. (/) (3<i/2. i \ .U (//) (\/-. 1/3).

Page 309.

9. (a-\-b)(x*+y
2
)

O//)2_ >o2

11. (0) *2
-fy

2 ^
/7

;

)' K&'-2fl-)=<>. 13. y
2
/c.

Page 315.

Ex.2. (/) .r y U/= 0. (//) x \-y = a. (Hi) y x-\-ajX.

Page 320.

1. *= 0, y-v- Lj-</. 2. x-:2, jc=3, y=-3.

3. A*^ :ui,y^(). 4. x=a. y-6.
5. .v=(), y x, y = x+ ]. 6. y^xia, x^=a.
7. y=.Y -2, y---~.v--3. 8. .x

i
I =0, y -0, ;c ; y =-o

9. y- r.v-- 3, y ---x+2, .Y-fy= ().

10. y=0, y [
x=l.

11. y ---(), y =xV2.
12. .Yfy=-h v/2, .v - i:l,y= : 1 .

Page 321

13. y= (>, yA'= 1. 14. *=!.
15. x+y=2, y==x-f -2, y=2jc 4.

16. y | 3=0, JC + 1=0, y-jc J 4.

17. x=0, y=--0, 2,y--,?x= fl. 18.

19. x-hya^0.
20. 4(y~x) + l=0, 2(y f Jf)

= 3, 4(y + 3;c) +9=0.
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Page 321.

21. x=y+
22. x=0.
27.

Page 325.

1. y^a, x=0, x+y+a=Q. 2. x=l, x=2, x 4-^ + 1=0.
3. 3(>>-x) 4-2=0.
5. X4-.X 4-1=0,
6. 3y+
7. ;>4-2
8. x=

10. jp=x t ^=2^+ 1, y=*2x+2.

Page 328.

5. 3y+*=l. 6. y
7. 8(^-x)+7=0. 2(^-3x)+3 =0.

3(2^+^)4-5=0, 106^-381x4-105=0.
8. x3 6x2

.y4-llx7
3

6j
3 x=0.

9. y=2x8
4-l, y= 2* 1, x^=2j, x+2j=0.

10. x 4-^=0, 2x 3^ 1=0, 2x->3y4-3-=0, 4x- 6^ 4-9=0.

Page 331.

Ex. 2. (f) x4-y . The curve lies above or below the asymp-
tote according as x is positive or negative.

(//') x-f-j; 4-0=0. The curve lies above the asymptote both for

positive as well as negative values of x.

(Hi) y=zx\-\. The curve lies above or below the asymptote
accordiug as x is positive or negative.

Page 334.

1. tf=rsin (1 0). 2. a+^2r sin (04-i7r)=0.
3. rcos6b=a. 4. r cos 0a=;Q 1

r sin 8a^=0.
5. 2ram0=a,2e=ir. 6. 0=7r/4.
7. r sin 00, 7r(r cos 0)4-2a=0.

o . / />
WTT >v a .

5. rsmf 6-- )= where mis any integer.
\ n J n cos AWTT

9. 7i0=/W7r where m is any integer.
10. rcos0=0. 11. 0=0.
12. a=rsin(0-.l). 13. y+a=0. 14.

zero.

15. System of parallel lines y~ae
W7r

where n is any integer or

16. ^4-11=0.
f (ft\

17. -^T\V ==rr sin ( ei 6 )> where 6
l is any root of the equa-

19, a=2r (cos sin 0), a4-2r(oos 0+sin 0)=0.
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Page 338.

I. x=0, >=0. 2. bx~ay. 3. x=0.
4. >>==*. 5. y=x.

Page 339.

1. *=a. 2. (y-l)= (x-2).
3. V3>'-v'2(*-*) ; 2(*-2a)= V3(y-*).

Page 341.

1. Cusp at (0, 0). 2. Cusp at (0, 0).

3. Node at (0, 0).

Page 342.

4. Node at (a, 0).

5. Node at (2, 0).

6. (a, 0) is a node, cusp or an isolated point according as b\a
is less than, equal to or greater than 1.

7. Conjugate point at (a, 0).

8. Conjugate point at (2, 3).

9. Conjugate point at (a, b).

10. Cusp at (0, -4a).
llr Cusp at ( 1, -2).

N

12. Cusp at (1, -1).
13. No multiple point.

14- (0, 0) are triple point : (fa, 0) are cusps : node at

(-a,0).
15. (0, a) is a double point ; being a node, cusp or conjugate

point according as b>a, b=a or b<a.
16. -a

17.

18.

Page 345.

1. Single cusp of first species.

2. Single cusp of first species.

3. Single cusp of first species.

4. Single cusp of first species.

5. Isolated point.

6. Double cusp of second species.

7. Oscu- inflexion.

8. Oscu-inflexion.

Page 347.

2. 2^2. 3. 2v/2 for each. 4. 3fl/2 for each.

5. -VV17, V2. 6. a, -*/2, -5*
7.
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^ C/O*'
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85'
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Page 377.

b*=l. (ii) c*(

(iii) x=a cos 0+aO sin 0, y=a sin Q-~a cos 0.

2/(2-n) , 2/(2-) 2/(2-w)/v ' /v ' /v ',. v

(iv)

(v) (p-
(VI) X2 J2= C2 .

2. (i) x^+^=ci (ii) x^+^= ci (iff)

Page 378.

3. (i) 2xy=c*. (ii) xyc=0.
5.

6. (jc^j+j^j;) = 2a. 7.

9. x

12. (

13. The straight line p*xpy+(a+ap*+pq)=().

cos

,..., . (a -7T/2) cot a fl cot a
(///) r sin Kae e

17 + ^ r
+ p)

Gr= *)
CO

16. (i) r2(e
2

1) 2/ er cos 0+2/2 =0.

Page 379.

Miscellaneous Exercises II.

Page 379.

2. 2a see3 (0/2). 4. 4:4/2 ; a.

Page 380.

14. (9/
2

, -6/).
17. (Jfl. a).

1Q /22565 448i* \" UlS5 ' 3375V A
' (b ' } *

Page 381.
^

28. >'=xi*.
32. (1, 1) is an isolated point ; (5, 3) and (5, 5) ate the

two points of inflexion.

36. x~a tanh a, .y^sech a is the required curve.

Page 382.

40. x sin \t-\-y cos
fat

---a sin /, x cos \ty sin ^/..-3fl cos ?/.

47. (/) Isolated point. (//) Single cusp of second
species.
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Acceleration, 79

Angle of intersection,
of two curves, 262, 268

Approximate calculation, 207

Arcs, 274

, Derivative of, 274

Astroid,212,257
Asymptotes, 313

by expansion, 328

by inspection, 324

parallel to axes, 315

Cardioide, 249

Catenary, 238, 259

Cauchy's Theorem, 137

Cissoid, 244
Closed interval, 1*3

Composite functions, 209

Concavity, 281

Conjugate point, 336

Convexity, 281

Continuity of elementary functions, 54
Continuous functions, 36, 194

, properties of, 54

Curvature, 290
, Centre of, 303
, Chord of, 305
, Circle of, 305

, Radius of, 291
Curve Tracing, 348

Cusps, 336

Cycloid, 240, 257

D

Derivative, 72

, of arcs, 274
, Partial, 196

, Sign of, 136, 150

Determinant, 107

Differentials, 206
Differential Coefficient, 72

Differentiation, 72

, Logarithmic, 100

, of function of a function, 86
, of implicit functions, 209
, of inverse functions, 88

, Partial, 196
. Repeated, 217

, Successive, 113

Discontinuity, 38

Double points, 336

Fnyelopes, 369

Epicycloid, 240

Equations,
, Implicit, 243, 254

, Intrinsic, 291

, Parametric, 255, 276

, Pedal, 266, 272

. Polar, 248, 277, 298

, Tangential polar, 300

Equiangular spiral, 252, 269
Euler's Theorem, 199

Evolutes, 305,310, 372

Expansions, 179
Extreme values, 148

Folium of Descartes, 246, 362

Functions, 11

, Algebraic, 35

, Composite, 209

, Continuous, 37

, Exponential, 23, 97

, Homogeneous, 199

, Hyperbolic, 67, 97

, Implicit, 209, 292

, Inverse, 21, 88
--

, Inverse Hyperbolic, 70, 99

, Inverse Trigonometric, 30, 93

, Logarithmic, 25, 96, 100

, Monotonic, 20

, of a function, 34, 86

, of two variables, 193

, Transcendental, 35

, Trigonometric, 26, 89

Geometric Interpretation, 77, 131, 197

Graphical representation, 14

Greatest values, 149

H
Homogeneous functions, 199

Hypocycloid, 240

Implicit Functions, 209, 292

Indeterminate forms, 165, 185
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Infinite limits, 48
, series, 179

Inflexion, 281

Interval, Closed, 13, 55

, Open, 13

Inversion of operation, 53

Lagrange's Theorem, 133

, multipliers. 230
Least values, 149
Leibnitz's Theorem, 121

Lejnniscate, 249
Limits, 41, 195

, Indeterminate, 165

, Right handed, 42
, Left handed, 42

M
Maximum value, 148, 223
Minimum value, 148, 223
Mean value theorem, 133, 137

Modulus, 9
Monotonic functions, 20

Multipliers, 230

N
Newtonian Method, 293
Node, 336
Normal, 259

Numbers, Irrational, 5

, Rational, 2

, Real, 6

Open interval, 13

Points, Stationary, 150, 223
Polar coordinates, 267, 277, 331, 359

Radius of curvature, 291, 345
, ve.ctor, 267

Remainder, 142

Repeated derivatives, 217
Rolle's Theorem, 130

Series, Binomial, 183

, Taylor's, 140, 220
, Maclaurin's 142

Sign of derivative, 136, 150

Singular points, 335
Smallest values, 149

Spirals, 251, 252
Stationary values, 150,223

Strophpid, 245

Subsidiary conditions, 229
Sub-tangent, 264
Sub-normal, 264
Successive differentiation, 1 13

Tangent, 254

Tangential Polar equations, 300
Taylor's Theorem, 140, 220
Theorem, Cauchy's, 140

, Euler's, 199

, Lagrange's, 133

, Leibnitz's 121

, Maclaurin's 142

, Mean value, 133, 137

, Rolle's, 130

, Taylor's, 140, 220
, on limits, 52

Total differentials, 200

Parametric equations, 255, 276, 293, 364
Partial differentiation, 196
Pedal equations, 266, 272
Points, Conjugate, 336

, Cusp, 336

, Double, 336

, Node, 336
, Multiple, 335

, of inflexion, 281

, Singular, 335

Values, Greatest, 149

, Maximum, 148, 223
, Minimum, 148, 223

, Smallest, 149

, Stationary, 150, 223

Variables, 11

Velocity, 78








